Hierarchical Context Network for Airborne Image Segmentation

被引:5
作者
Zhou, Feng [1 ,2 ]
Hang, Renlong [1 ,2 ]
Shuai, Hui [1 ,2 ]
Liu, Qingshan [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equip, Nanjing 210044, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Image segmentation; Automobiles; Semantics; Roads; Feature extraction; Kernel; Buildings; Airborne images; hierarchical context; pixel-to-object (P2O) subnetwork; pixel-to-pixel (P2P) subnetwork; semantic segmentation; SEMANTIC SEGMENTATION; CLASSIFICATION; SCENE;
D O I
10.1109/TGRS.2021.3133258
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Most of the recent methods focus on capturing contextual information by measuring relations (e.g., feature similarity) between each pixel and all the others for airborne image segmentation. Nevertheless, these methods have difficulty in handling confusing objects with a partially similar appearance. In this article, we attempt to simultaneously explore pixel-to-pixel (P2P) and pixel-to-object (P2O) relations to learn contextual information. For this purpose, a hierarchical context network (HCNet) is proposed. It consists of a P2P subnetwork and a P2O subnetwork. The P2P subnetwork learns the P2P relation (detail-grained context) for better preservation of the details (e.g., boundary) of the objects. Meanwhile, the P2O subnetwork models the P2O relation (semantic-grained context), aiming at improving the intraobject semantic consistency. When inferring the segmentation results, outputs of these two subnetworks are aggregated to obtain the hierarchical contextual information. Experimental results demonstrate that the proposed model achieves competitive performance on three challenging benchmarks.
引用
收藏
页数:12
相关论文
共 46 条
[1]  
[Anonymous], 2017, P IEEE C COMP VIS PA
[2]  
[Anonymous], 2014, arXiv
[3]   Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks [J].
Audebert, Nicolas ;
Le Saux, Bertrand ;
Lefevre, Sebastien .
COMPUTER VISION - ACCV 2016, PT I, 2017, 10111 :180-196
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]  
Berg A.C., 2015, Parsenet: Looking wider to see better
[6]   Symmetrical Dense-Shortcut Deep Fully Convolutional Networks for Semantic Segmentation of Very-High-Resolution Remote Sensing Images [J].
Chen, Guanzhou ;
Zhang, Xiaodong ;
Wang, Qing ;
Dai, Fan ;
Gong, Yuanfu ;
Zhu, Kun .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (05) :1633-1644
[7]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   Context Contrasted Feature and Gated Multi-scale Aggregation for Scene Segmentation [J].
Ding, Henghui ;
Jiang, Xudong ;
Shuai, Bing ;
Liu, Ai Qun ;
Wang, Gang .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2393-2402
[10]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149