POSITIVE SOLUTIONS FOR FIRST-ORDER NONLINEAR CAPUTO-HADAMARD FRACTIONAL RELAXATION DIFFERENTIAL EQUATIONS

被引:8
作者
Ardjouni, Abdelouaheb [1 ]
Djoudi, Ahcene [2 ]
机构
[1] Univ Souk Ahras, Dept Math & Informat, POB 1553, Souk Ahras, Algeria
[2] Univ Annaba, Dept Math, POB 12, Annaba, Algeria
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2021年 / 45卷 / 06期
关键词
Fixed points; fractional differential equations; positive solutions; existence; uniqueness; relaxation phenomenon; EXISTENCE;
D O I
10.46793/KgJMat2106.897A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article concerns the existence and uniqueness of positive solutions of the first-order nonlinear Caputo-Hadamard fractional relaxation differential equation {D-1(alpha)(x (t) - g (t, x(t))) + wx (t) = f (t, x (t)), 1< t <= e, x (1) = x(0) > g (1, x(0)) > 0, where 0 < alpha <= 1. In the process we convert the given fractional differential equation into an equivalent integral equation. Then we construct appropriate mappings and employ the Krasnoselskii fixed point theorem and the method of upper and lower solutions to show the existence of a positive solution of this equation. We also use the Banach fixed point theorem to show the existence of a unique positive solution. Finally, an example is given to illustrate our results.
引用
收藏
页码:897 / 908
页数:12
相关论文
共 16 条
[1]  
Abbas S, 2011, ELECTRON J DIFFER EQ
[2]   Existence of fractional neutral functional differential equations [J].
Agarwal, R. P. ;
Zhou, Yong ;
He, Yunyun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1095-1100
[3]  
Ahmad B, 2017, ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, V36
[4]  
[Anonymous], 1974, FIXED POINT THEOREMS
[5]   Positive solutions for nonlinear fractional differential equations [J].
Boulares, Hamid ;
Ardjouni, Abdelouaheb ;
Laskri, Yamina .
POSITIVITY, 2017, 21 (03) :1201-1212
[6]   Stability in delay nonlinear fractional differential equations [J].
Boulares H. ;
Ardjouni A. ;
Laskri Y. .
Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (2) :243-253
[7]   Positive Solutions of the Fractional Relaxation Equation Using Lower and Upper Solutions [J].
Chidouh A. ;
Guezane-Lakoud A. ;
Bebbouchi R. .
Vietnam Journal of Mathematics, 2016, 44 (4) :739-748
[8]  
Ge F., 2015, J SHANGHAI NORM U, V44, P284
[9]   Stability analysis by Krasnoselskii's fixed point theorem for nonlinear fractional differential equations [J].
Ge, Fudong ;
Kou, Chunhai .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :308-316
[10]  
Kilbas A.A.A., 2006, THEORY APPL FRACTION, VVolume 204, DOI DOI 10.1016/S0304-0208(06)80001-0