Activation of cGMP-Dependent Protein Kinase Stimulates Cardiac ATP-Sensitive Potassium Channels via a ROS/Calmodulin/CaMKII Signaling Cascade

被引:40
作者
Chai, Yongping [1 ,2 ]
Zhang, Dai-Min [1 ,2 ]
Lin, Yu-Fung [1 ,2 ,3 ]
机构
[1] Univ Calif Davis, Dept Physiol, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Membrane Biol, Davis, CA 95616 USA
[3] Univ Calif Davis, Dept Anesthesiol, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
PANCREATIC BETA-CELLS; RABBIT VENTRICULAR MYOCYTES; OXYGEN-FREE RADICALS; K+ CHANNELS; MEDIATED PHOSPHORYLATION; SKELETAL-MUSCLE; SULFONYLUREA RECEPTOR; INSULIN-SECRETION; DOPAMINE RELEASE; MEMBRANE PATCHES;
D O I
10.1371/journal.pone.0018191
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Cyclic GMP (cGMP)-dependent protein kinase (PKG) is recognized as an important signaling component in diverse cell types. PKG may influence the function of cardiac ATP-sensitive potassium (K(ATP)) channels, an ion channel critical for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was designed to address this issue. Methods and Findings: Single-channel recordings of cardiac K(ATP) channels were performed in both cell-attached and inside-out patch configurations using transfected human embryonic kidney (HEK) 293 cells and rabbit ventricular cardiomyocytes. We found that Kir6.2/SUR2A (the cardiac-type K(ATP)) channels were activated by cGMP-selective phosphodiesterase inhibitor zaprinast in a concentration-dependent manner in cell-attached patches obtained from HEK293 cells, an effect mimicked by the membrane-permeable cGMP analog 8-bromo-cGMP whereas abolished by selective PKG inhibitors. Intriguingly, direct application of PKG moderately reduced rather than augmented Kir6.2/SUR2A single-channel currents in excised, inside-out patches. Moreover, PKG stimulation of Kir6.2/SUR2A channels in intact cells was abrogated by ROS/H(2)O(2) scavenging, antagonism of calmodulin, and blockade of calcium/calmodulin-dependent protein kinase II (CaMKII), respectively. Exogenous H(2)O(2) also concentration-dependently stimulated Kir6.2/SUR2A channels in intact cells, and its effect was prevented by inhibition of calmodulin or CaMKII. PKG stimulation of K(ATP) channels was confirmed in intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions. Conclusion: The present study provides novel evidence that PKG exerts dual regulation of cardiac K(ATP) channels, including marked stimulation resulting from intracellular signaling mediated by ROS (H(2)O(2) in particular), calmodulin and CaMKII, alongside of moderate channel suppression likely mediated by direct PKG phosphorylation of the channel or some closely associated proteins. The novel cGMP/PKG/ROS/calmodulin/CaMKII signaling pathway may regulate cardiomyocyte excitability by opening K(ATP) channels and contribute to cardiac protection against ischemia-reperfusion injury.
引用
收藏
页数:18
相关论文
共 62 条
[1]   Toward understanding the assembly and structure of KATP channels [J].
Aguilar-Bryan, L ;
Clement, JP ;
Gonzalez, G ;
Kunjilwar, K ;
Babenko, A ;
Bryan, J .
PHYSIOLOGICAL REVIEWS, 1998, 78 (01) :227-245
[2]   CLONING OF THE BETA-CELL HIGH-AFFINITY SULFONYLUREA RECEPTOR - A REGULATOR OF INSULIN-SECRETION [J].
AGUILARBRYAN, L ;
NICHOLS, CG ;
WECHSLER, SW ;
CLEMENT, JP ;
BOYD, AE ;
GONZALEZ, G ;
HERRERASOSA, H ;
NGUY, K ;
BRYAN, J ;
NELSON, DA .
SCIENCE, 1995, 268 (5209) :423-426
[3]   ADENOSINE 5'-TRIPHOSPHATE-SENSITIVE POTASSIUM CHANNELS [J].
ASHCROFT, FM .
ANNUAL REVIEW OF NEUROSCIENCE, 1988, 11 :97-118
[4]   Activation of ATP-sensitive K+ (KATP) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release [J].
Avshalumov, MV ;
Rice, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (20) :11729-11734
[5]  
Avshalumov MV, 2003, J NEUROSCI, V23, P2744
[6]   A view of SUR/KIR6.X, KATP channels [J].
Babenko, AP ;
Aguilar-Bryan, L ;
Bryan, J .
ANNUAL REVIEW OF PHYSIOLOGY, 1998, 60 :667-687
[7]   Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium [J].
Baines, CP ;
Goto, M ;
Downey, JM .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1997, 29 (01) :207-216
[8]   PKA-mediated phosphorylation of the human KATP channel:: separate roles of Kir6.2 and SUR1 subunit phosphorylation [J].
Béguin, P ;
Nagashima, K ;
Nishimura, M ;
Gonoi, T ;
Seino, S .
EMBO JOURNAL, 1999, 18 (17) :4722-4732
[9]   Dual regulation of the ATP-sensitive potassium channel by activation of cGMP-dependent protein kinase [J].
Chai, Yongping ;
Lin, Yu-Fung .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2008, 456 (05) :897-915
[10]   Stimulation of neuronal KATP channels by cGMP-dependent protein kinase: involvement of ROS and 5-hydroxydecanoate-sensitive factors in signal transduction [J].
Chai, Yongping ;
Lin, Yu-Fung .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2010, 298 (04) :C875-C892