1-D multipoint auxiliary source propagator for the total-field/scattered-field FDTD formulation

被引:35
作者
Tan, Tengmeng [1 ]
Potter, Mike [1 ]
机构
[1] Univ Calgary, Dept Elect & Comp Engn, Schulich Sch Engn, Calgary, AB T2N 1N4, Canada
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2007年 / 6卷
基金
加拿大自然科学与工程研究理事会;
关键词
finite-difference time-domain (FDTD); numerical dispersion; scattering;
D O I
10.1109/LAWP.2007.891959
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multipoint auxiliary time-domain 1-D propagator is proposed for initiation of plane wave sources in the total-field/scattered-field formulation (TFSF) of finite-difference time-domain (FDTD). The propagator is developed by making the 1-D and 2-D/3-D dispersion equations identical, leading to a multipoint 1-D stencil. A perfect match can be achieved for a plane wave propagating at an angle forming an integer gridcell ratio, which can in theory represent almost any angle. Numerical examples in 2-D show that leakage errors into the scattered field domain are on the order of finite precision (-300 dB for double precision).
引用
收藏
页码:144 / 148
页数:5
相关论文
共 7 条
[1]  
Guiffaut C, 2000, IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-4, P236, DOI 10.1109/APS.2000.873752
[2]   Analysis and compensation of numerical dispersion in the FDTD method for layered, anisotropic media [J].
Moss, CD ;
Teixeira, FL ;
Kong, JA .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2002, 50 (09) :1174-1184
[3]   Interpolation techniques to improve the accuracy of the plane wave excitations in the finite difference time domain method [J].
Oguz, U ;
Gurel, L .
RADIO SCIENCE, 1997, 32 (06) :2189-2199
[4]   An efficient and accurate technique for the incident-wave excitations in the FDTD method [J].
Oguz, U ;
Gurel, L ;
Arikan, O .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (06) :869-882
[5]   Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary [J].
Schneider, JB .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (12) :3280-3287
[6]  
Taflove A., 2005, Computational Electrodynamics: The Finite-Difference Time-Domain Method, V3rd
[7]  
TAN T, 2005, P IEEE APS URSI WASH