Non-parametric ODE-Based Disease Progression Model of Brain Biomarkers in Alzheimer's Disease

被引:2
作者
Bossa, Matias [1 ]
Berenguer, Abel Diaz [1 ]
Sahli, Hichem [1 ,2 ]
机构
[1] Vrije Univ Brussel VUB, Dept Elect & Informat ETRO, B-1050 Brussels, Belgium
[2] Interuniv Microelect Ctr IMEC, B-3001 Leuven, Belgium
来源
MACHINE LEARNING IN CLINICAL NEUROIMAGING, MLCN 2022 | 2022年 / 13596卷
基金
美国国家卫生研究院;
关键词
Disease progression model; Alzheimer's disease (AD); Magnetic resonance imaging (MRI); Amyloid PET; Ordinary differential equations (ODE); Gaussian process (GP); HYPOTHETICAL MODEL;
D O I
10.1007/978-3-031-17899-3_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven disease progression models of Alzheimer's disease are important for clinical prediction model development, disease mechanism understanding and clinical trial design. Among them, dynamical models are particularly appealing because they are intrinsically interpretable. Most dynamical models proposed so far are consistent with a linear chain of events, inspired by the amyloid cascade hypothesis. However, it is now widely acknowledged that disease progression is not fully compatible with this conceptual model, at least in sporadic Alzheimer's disease, and more flexibility is needed to model the full spectrum of the disease. We propose a Bayesian model of the joint evolution of brain image-derived biomarkers based on explicitly modelling biomarkers' velocities as a function of their current value and other subject characteristics. The model includes a system of ordinary differential equations to describe the biomarkers' dynamics and sets a Gaussian process prior to the velocity field. We illustrate the model on amyloid PET SUVR and MRI-derived volumetric features from the ADNI study.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 17 条
  • [1] Constructing longitudinal disease progression curves using sparse, short-term individual data with an application to Alzheimer's disease
    Budgeon, C. A.
    Murray, K.
    Turlach, B. A.
    Baker, S.
    Villemagne, V. L.
    Burnham, S. C.
    [J]. STATISTICS IN MEDICINE, 2017, 36 (17) : 2720 - 2734
  • [2] Estimating long-term multivariate progression from short-term data
    Donohue, Michael C.
    Jacqmin-Gadda, Helene
    Le Goff, Melanie
    Thomas, Ronald G.
    Raman, Rema
    Gamst, Anthony C.
    Beckett, Laurel A.
    Jack, Clifford R., Jr.
    Weiner, Michael W.
    Dartigues, Jean-Francois
    Aisen, Paul S.
    [J]. ALZHEIMERS & DEMENTIA, 2014, 10 (05) : S400 - S410
  • [3] The probabilistic model of Alzheimer disease: the amyloid hypothesis revised
    Frisoni, Giovanni B.
    Altomare, Daniele
    Thal, Dietmar Rudolf
    Ribaldi, Federica
    van der Kant, Rik
    Ossenkoppele, Rik
    Blennow, Kaj
    Cummings, Jeffrey
    van Duijn, Cornelia
    Nilsson, Peter M.
    Dietrich, Pierre-Yves
    Scheltens, Philip
    Dubois, Bruno
    [J]. NATURE REVIEWS NEUROSCIENCE, 2022, 23 (01) : 53 - 66
  • [4] The case for rejecting the amyloid cascade hypothesis
    Herrup, Karl
    [J]. NATURE NEUROSCIENCE, 2015, 18 (06) : 794 - 799
  • [5] Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50-95 years: a cross-sectional study
    Jack, Clifford R., Jr.
    Wiste, Heather J.
    Weigand, Stephen D.
    Therneau, Terry M.
    Knopman, David S.
    Lowe, Val
    Vemuri, Prashanthi
    Mielke, Michelle M.
    Roberts, Rosebud O.
    Machulda, Mary M.
    Senjem, Matthew L.
    Gunter, Jeffrey L.
    Rocca, Walter A.
    Petersen, Ronald C.
    [J]. LANCET NEUROLOGY, 2017, 16 (06) : 435 - 444
  • [6] Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers
    Jack, Clifford R., Jr.
    Knopman, David S.
    Jagust, William J.
    Petersen, Ronald C.
    Weiner, Michael W.
    Aisen, Paul S.
    Shaw, Leslie M.
    Vemuri, Prashanthi
    Wiste, Heather J.
    Weigand, Stephen D.
    Lesnick, Timothy G.
    Pankratz, Vernon S.
    Donohue, Michael C.
    Trojanowski, John Q.
    [J]. LANCET NEUROLOGY, 2013, 12 (02) : 207 - 216
  • [7] Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
    Jack, Clifford R., Jr.
    Knopman, David S.
    Jagust, William J.
    Shaw, Leslie M.
    Aisen, Paul S.
    Weiner, Michael W.
    Petersen, Ronald C.
    Trojanowski, John Q.
    [J]. LANCET NEUROLOGY, 2010, 9 (01) : 119 - 128
  • [8] A computational neurodegenerative disease progression score: Method and results with the Alzheimer's disease neuroimaging initiative cohort
    Jedynak, Bruno M.
    Lang, Andrew
    Liu, Bo
    Katz, Elyse
    Zhang, Yanwei
    Wyman, Bradley T.
    Raunig, David
    Jedynak, C. Pierre
    Caffo, Brian
    Prince, Jerry L.
    [J]. NEUROIMAGE, 2012, 63 (03) : 1478 - 1486
  • [9] Alzheimer disease
    Knopman, David S.
    Amieva, Helene
    Petersen, Ronald C.
    Chetelat, Gael
    Holtzman, David M.
    Hyman, Bradley T.
    Nixon, Ralph A.
    Jones, David T.
    [J]. NATURE REVIEWS DISEASE PRIMERS, 2021, 7 (01)
  • [10] Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series
    Kovacs, Gabor G.
    Milenkovic, Ivan
    Woehrer, Adelheid
    Hoeftberger, Romana
    Gelpi, Ellen
    Haberler, Christine
    Hoenigschnabl, Selma
    Reiner-Concin, Angelika
    Heinzl, Harald
    Jungwirth, Susanne
    Krampla, Wolfgang
    Fischer, Peter
    Budka, Herbert
    [J]. ACTA NEUROPATHOLOGICA, 2013, 126 (03) : 365 - 384