General matrix exponent solutions to the coupled derivative nonlinear Schrodinger equation on half-line

被引:3
作者
Zhang, Jian-Bing [1 ]
Ma, Wen-Xiu [2 ,3 ,4 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[4] North West Univ, Dept Math Sci, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
来源
MODERN PHYSICS LETTERS B | 2019年 / 33卷 / 05期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
The Chen-Lee-Liu equation; inverse scattering transform; the coupled Sylvester equation; DE-VRIES EQUATION; COMPLEXITON SOLUTIONS; WRONSKIAN SOLUTIONS; SYSTEMS; INTEGRABILITY; HIERARCHY; SOLITONS;
D O I
10.1142/S0217984919500556
中图分类号
O59 [应用物理学];
学科分类号
摘要
Generalized matrix exponential solutions to the coupled derivative nonlinear Schrodinger equation (DNLSE) are obtained by the inverse scattering transformation (IST). The resulting solutions involve six matrices, which satisfy the coupled Sylvester equations. Several kinds of explicit solutions including soliton, complexiton, and Matveev solutions are deduced from the generalized matrix exponential solutions by choosing different kinds of the six involved matrices through Mathematica symbolic computations.
引用
收藏
页数:10
相关论文
共 50 条
[41]   The linear BBM-equation on the half-line, revisited [J].
Bona, J. L. ;
Chatziafratis, A. ;
Chen, H. ;
Kamvissis, S. .
LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (04)
[42]   Boundary value problem for the KDV equation on a half-line [J].
V. E. Adler ;
L. T. Habibullin ;
A. B. Shabat .
Theoretical and Mathematical Physics, 1997, 110 :78-90
[43]   The Korteweg-de Vries equation on the half-line [J].
Fokas, Athanassios S. ;
Himonas, A. Alexandrou ;
Mantzavinos, Dionyssios .
NONLINEARITY, 2016, 29 (02) :489-527
[44]   Intermediate long-wave equation on a half-line [J].
Arciga Alejandre, Martin P. ;
Kaikina, Elena I. .
JOURNAL OF EVOLUTION EQUATIONS, 2011, 11 (04) :743-770
[45]   Manipulation of light in a generalized coupled Nonlinear Schrodinger equation [J].
Radha, R. ;
Vinayagam, P. S. ;
Porsezian, K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 37 :354-361
[46]   Complex excitations for the derivative nonlinear Schrodinger equation [J].
Zhou, Huijuan ;
Chen, Yong ;
Tang, Xiaoyan ;
Li, Yuqi .
NONLINEAR DYNAMICS, 2022, 109 (03) :1947-1967
[47]   Numerical Methods for the Derivative Nonlinear Schrodinger Equation [J].
Li, Shu-Cun ;
Li, Xiang-Gui ;
Shi, Fang-Yuan .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (3-4) :239-249
[48]   NEW HIERARCHIES OF DERIVATIVE NONLINEAR SCHRODINGER-TYPE EQUATION [J].
Wu, Zhiwei ;
He, Jingsong .
ROMANIAN REPORTS IN PHYSICS, 2016, 68 (01) :79-98
[49]   On Darboux transformations for the derivative nonlinear Schrodinger equation [J].
Nimmo, Jonathan J. C. ;
Yilmaz, Halis .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (02) :278-293
[50]   Soliton-like solutions of a derivative nonlinear Schrodinger equation with variable coefficients in inhomogeneous optical fibers [J].
Li, Min ;
Tian, Bo ;
Liu, Wen-Jun ;
Zhang, Hai-Qiang ;
Meng, Xiang-Hua ;
Xu, Tao .
NONLINEAR DYNAMICS, 2010, 62 (04) :919-929