General matrix exponent solutions to the coupled derivative nonlinear Schrodinger equation on half-line

被引:3
作者
Zhang, Jian-Bing [1 ]
Ma, Wen-Xiu [2 ,3 ,4 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[4] North West Univ, Dept Math Sci, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
来源
MODERN PHYSICS LETTERS B | 2019年 / 33卷 / 05期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
The Chen-Lee-Liu equation; inverse scattering transform; the coupled Sylvester equation; DE-VRIES EQUATION; COMPLEXITON SOLUTIONS; WRONSKIAN SOLUTIONS; SYSTEMS; INTEGRABILITY; HIERARCHY; SOLITONS;
D O I
10.1142/S0217984919500556
中图分类号
O59 [应用物理学];
学科分类号
摘要
Generalized matrix exponential solutions to the coupled derivative nonlinear Schrodinger equation (DNLSE) are obtained by the inverse scattering transformation (IST). The resulting solutions involve six matrices, which satisfy the coupled Sylvester equations. Several kinds of explicit solutions including soliton, complexiton, and Matveev solutions are deduced from the generalized matrix exponential solutions by choosing different kinds of the six involved matrices through Mathematica symbolic computations.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Multiplicity of solutions for impulsive differential equation on the half-line via variational methods [J].
Chen, Huiwen ;
He, Zhimin ;
Li, Jianli .
BOUNDARY VALUE PROBLEMS, 2016, :1-15
[32]   Local regularity properties for 1D mixed nonlinear Schrodinger equations on half-line [J].
Guo, Boling ;
Wu, Jun .
FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (06) :1121-1142
[33]   ON VECTOR DERIVATIVE NONLINEAR SCHRODINGER EQUATION [J].
Smirnov, A. O. ;
Shilovsky, S. D. .
UFA MATHEMATICAL JOURNAL, 2024, 16 (03) :92-106
[34]   ON THE VECTOR DERIVATIVE OF THE NONLINEAR SCHRODINGER EQUATION [J].
Smirnov, A. o. ;
Shilovskiy, S. d .
UFA MATHEMATICAL JOURNAL, 2024, 16 (03) :96-110
[35]   The Riemann-Hilbert Approach to Initial-Boundary Value Problems for Integrable Coherently Coupled Nonlinear Schrodinger Systems on the Half-Line [J].
Hu, Beibei ;
Xia, Tiecheng ;
Ma, Wen-Xiu .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (03) :531-548
[36]   Local well-posedness of the higher-order nonlinear Schrodinger equation on the half-line: Single-boundary condition case [J].
Alkin, Aykut ;
Mantzavinos, Dionyssios ;
Ozsari, Turker .
STUDIES IN APPLIED MATHEMATICS, 2024, 152 (01) :203-248
[37]   Riemann-Hilbert approach to coupled nonlinear Schrödinger equations on a half-line [J].
Wang, Shun ;
Li, Jian .
THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (03) :1496-1514
[38]   Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation [J].
Feng, Lian-Li ;
Zhang, Tian-Tian .
APPLIED MATHEMATICS LETTERS, 2018, 78 :133-140
[39]   The initial-boundary value problem for the Kawahara equation on the half-line [J].
Cavalcante, Marcio ;
Kwak, Chulkwang .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (05)
[40]   New and more general traveling wave solutions for nonlinear Schrodinger equation [J].
Cheemaa, Nadia ;
Younis, Muhammad .
WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (01) :30-41