General matrix exponent solutions to the coupled derivative nonlinear Schrodinger equation on half-line

被引:3
作者
Zhang, Jian-Bing [1 ]
Ma, Wen-Xiu [2 ,3 ,4 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[4] North West Univ, Dept Math Sci, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
来源
MODERN PHYSICS LETTERS B | 2019年 / 33卷 / 05期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
The Chen-Lee-Liu equation; inverse scattering transform; the coupled Sylvester equation; DE-VRIES EQUATION; COMPLEXITON SOLUTIONS; WRONSKIAN SOLUTIONS; SYSTEMS; INTEGRABILITY; HIERARCHY; SOLITONS;
D O I
10.1142/S0217984919500556
中图分类号
O59 [应用物理学];
学科分类号
摘要
Generalized matrix exponential solutions to the coupled derivative nonlinear Schrodinger equation (DNLSE) are obtained by the inverse scattering transformation (IST). The resulting solutions involve six matrices, which satisfy the coupled Sylvester equations. Several kinds of explicit solutions including soliton, complexiton, and Matveev solutions are deduced from the generalized matrix exponential solutions by choosing different kinds of the six involved matrices through Mathematica symbolic computations.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Periodic solutions of a derivative nonlinear Schrodinger equation: Elliptic integrals of the third kind [J].
Chow, K. W. ;
Ng, T. W. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) :3825-3830
[22]   The "good" Boussinesq equation on the half-line [J].
Himonas, A. Alexandrou ;
Mantzavinos, Dionyssios .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (09) :3107-3160
[23]   THE INITIAL BOUNDARY VALUE PROBLEM FOR SOME QUADRATIC NONLINEAR SCHRODINGER EQUATIONS ON THE HALF-LINE [J].
Cavalcante, Marcio .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (7-8) :521-554
[24]   Stability of Multisolitons for the Derivative Nonlinear Schrodinger Equation [J].
Le Coz, Stefan ;
Wu, Yifei .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (13) :4120-4170
[25]   Solitons to the derivative nonlinear Schrodinger equation: Double Wronskians and reductions [J].
Liu, Shu-Zhi ;
Wu, Hua .
MODERN PHYSICS LETTERS B, 2021, 35 (24)
[26]   Physically significant nonlocal nonlinear Schrodinger equation and its soliton solutions [J].
Yang, Jianke .
PHYSICAL REVIEW E, 2018, 98 (04)
[27]   Well-posedness and nonlinear smoothing for the "good" Boussinesq equation on the half-line [J].
Compaan, E. ;
Tzirakis, N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (12) :5824-5859
[28]   On the Global Behavior of Solutions of a Coupled System of Nonlinear Schrodinger Equation [J].
Destyl, Edes ;
Nuiro, Sylvere Paul ;
Poullet, Pascal .
STUDIES IN APPLIED MATHEMATICS, 2017, 138 (02) :227-244
[29]   Invariant soliton solutions for the coupled nonlinear Schrodinger type equation [J].
Malik, Sandeep ;
Kumar, Sachin ;
Nisar, Kottakkaran Sooppy .
ALEXANDRIA ENGINEERING JOURNAL, 2023, 66 :97-105
[30]   Rational Solutions of a Weakly Coupled Nonlocal Nonlinear Schrodinger Equation [J].
Zhou, Huijuan ;
Li, Chuanzhong ;
Lin, Yueh-Lung .
ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018