共 50 条
Jackknife model averaging for quantile regressions
被引:102
|作者:
Lu, Xun
[1
]
Su, Liangjun
[2
]
机构:
[1] Hong Kong Univ Sci & Technol, Dept Econ, Hong Kong, Hong Kong, Peoples R China
[2] Singapore Management Univ, Sch Econ, Singapore 178903, Singapore
关键词:
Final prediction error;
High dimensionality;
Model averaging;
Model selection;
Misspecification;
Quantile regression;
GENERALIZED CROSS-VALIDATION;
ASYMPTOTIC OPTIMALITY;
DIVERGING NUMBER;
M-ESTIMATORS;
SELECTION;
PARAMETERS;
LIKELIHOOD;
INFERENCE;
CRITERION;
BEHAVIOR;
D O I:
10.1016/j.jeconom.2014.11.005
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
In this paper we consider model averaging for quantile regressions (QR) when all models under investigation are potentially misspecified and the number of parameters is diverging with the sample size. To allow for the dependence between the error terms and regressors in the QR models, we propose a jackknife model averaging (JMA) estimator which selects the weights by minimizing a leave-one-out cross-validation criterion function and demonstrate its asymptotic optimality in terms of minimizing the out-of-sample final prediction error. We conduct simulations to demonstrate the finite-sample performance of our estimator and compare it with other model selection and averaging methods. We apply our JMA method to forecast quantiles of excess stock returns and wages. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 58
页数:19
相关论文