Multi-objective optimization of sensor array using genetic algorithm

被引:19
|
作者
Xu, Zhe [1 ]
Lu, Susan [1 ]
机构
[1] Binghamton Univ, Dept Syst Sci & Ind Engn, Binghamton, NY 13902 USA
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2011年 / 160卷 / 01期
关键词
Multi-objective optimization; Entropy; Information gain; Selectivity; Diversity; Genetic algorithms; Sensor array;
D O I
10.1016/j.snb.2011.07.048
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A multi-objective optimization method using genetic algorithm was proposed for sensor array optimization. Based on information theory, selectivity and diversity were used as the criteria for constructing two objective functions. A statistic measurement of resolving power, general resolution factor, and visual inspection were used to evaluate the optimization results with the aid of principal component analysis. In each Pareto set, most nondominated solutions had better statistics than the combination using all potential sensors. Also the principal component plots showed that different vapor classes were generally better separated after optimization. The experiment results indicated that the proposed method could successfully identify a set of Pareto optimal solutions of small size; and most optimized sensor arrays provided input with improved quality, i.e. better separation of target analytes. The running time for implementing the multi-objective optimization was satisfactory. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条
  • [1] A Multi-agent genetic algorithm for multi-objective optimization
    Akopov, Andranik S.
    Hevencev, Maxim A.
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 1391 - 1395
  • [2] Multi-objective Optimization Using Immune Algorithm
    Guo, Pengfei
    Wang, Xuezhi
    Han, Yingshi
    APPLIED INFORMATICS AND COMMUNICATION, PT III, 2011, 226 : 527 - 534
  • [3] Multi-objective Optimization Using Immune Algorithm
    Guo, Pengfei
    Wang, Xuezhi
    Han, Yingshi
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL III, 2010, : 304 - 307
  • [4] Entropy-based multi-objective genetic algorithm for design optimization
    Farhang-Mehr, A
    Azarm, S
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2002, 24 (05) : 351 - 361
  • [5] Multi-objective optimization scheme using Pareto Genetic Algorithm
    Qin, YT
    Ma, LH
    ICCC2004: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION VOL 1AND 2, 2004, : 1754 - 1757
  • [6] Multi-objective optimization using genetic simulated annealing algorithm
    Shu, Wanneng
    DCABES 2007 Proceedings, Vols I and II, 2007, : 42 - 45
  • [7] Multi-objective optimization of rotary regenerator using genetic algorithm
    Sanaye, Sepehr
    Hajabdollahi, Hassan
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2009, 48 (10) : 1967 - 1977
  • [8] Multi-Objective Highway Alignment Optimization Using A Genetic Algorithm
    Maji, Avijit
    Jha, Manoj K.
    JOURNAL OF ADVANCED TRANSPORTATION, 2009, 43 (04) : 481 - 504
  • [9] A genetic algorithm for unconstrained multi-objective optimization
    Long, Qiang
    Wu, Changzhi
    Huang, Tingwen
    Wang, Xiangyu
    SWARM AND EVOLUTIONARY COMPUTATION, 2015, 22 : 1 - 14
  • [10] Genetic algorithm for multi-objective experimental optimization
    Link, Hannes
    Weuster-Botz, Dirk
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2006, 29 (5-6) : 385 - 390