Deterministic Solution of the Discrete Wigner Equation

被引:5
作者
Cervenka, Johann [1 ]
Ellinghaus, Paul [1 ]
Nedjalkov, Mihail [1 ]
机构
[1] TU Wien, Inst Microelect, Vienna, Austria
来源
NUMERICAL METHODS AND APPLICATIONS (NMA 2014) | 2015年 / 8962卷
关键词
Discrete Wigner equation; Integral formulation; TIME-DOMAIN;
D O I
10.1007/978-3-319-15585-2_17
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Wigner formalism provides a convenient formulation of quantum mechanics in the phase space. Deterministic solutions of the Wigner equation are especially needed for problems where phase space quantities vary over several orders of magnitude and thus can not be resolved by the existing stochastic approaches. However, finite difference schemes have been problematic due to the discretization of the diffusion term in this differential equation. A new approach, which uses an integral formulation of the Wigner equation that avoids the problematic differentiation, is shown here. The results of the deterministic method are compared and validated with solutions of the Schrodinger equation. Furthermore, certain numerical aspects pertaining to the demanded parallel implementation are discussed.
引用
收藏
页码:149 / 156
页数:8
相关论文
共 8 条
[1]  
Dimov I.T., 2008, Monte Carlo methods for applied scientists
[2]   Electron wave-packet transport through nanoscale semiconductor device in time domain [J].
Fu, Y ;
Willander, M .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (09)
[3]  
Griffiths D.J., 2018, Introduction to Quantum Mechanics
[4]  
Kosik R., 2004, THESIS I MIKROELEKTR
[5]   Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices [J].
Nedjalkov, M ;
Kosina, H ;
Selberherr, S ;
Ringhofer, C ;
Ferry, DK .
PHYSICAL REVIEW B, 2004, 70 (11) :115319-1
[6]  
Nedjalkov M, 2011, NANO-ELECTRONIC DEVICES: SEMICLASSICAL AND QUANTUM TRANSPORT MODELING, P289, DOI 10.1007/978-1-4419-8840-9_5
[7]   A benchmark study of the Wigner Monte Carlo method [J].
Sellier, Jean Michel ;
Nedjalkov, Mihail ;
Dimov, Ivan ;
Selberherr, Siegfried .
MONTE CARLO METHODS AND APPLICATIONS, 2014, 20 (01) :43-51
[8]   Solving the Schrodinger equation using the finite difference time domain method [J].
Sudiarta, I. Wayan ;
Geldart, D. J. Wallace .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (08) :1885-1896