共 42 条
Solid-liquid density and spin crossovers in (Mg, Fe)O system at deep mantle conditions
被引:20
作者:
Ghosh, Dipta B.
[1
]
Karki, Bijaya B.
[1
,2
,3
]
机构:
[1] Louisiana State Univ, Sch Elect Engn & Comp Sci, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
来源:
基金:
美国国家科学基金会;
关键词:
EARTHS LOWERMOST MANTLE;
EQUATION-OF-STATE;
SILICATE PEROVSKITE;
MGSIO3;
PEROVSKITE;
SEISMIC EVIDENCE;
TRANSITION;
MELT;
PERIDOTITE;
THERMODYNAMICS;
ELEMENTS;
D O I:
10.1038/srep37269
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The low/ultralow-velocity zones in the Earth's mantle can be explained by the presence of partial melting, critically depending on density contrast between the melt and surrounding solid mantle. Here, first-principles molecular dynamics simulations of (Mg, Fe)O ferropericlase in the solid and liquid states show that their densities increasingly approach each other as pressure increases. The isochemical density difference between them diminishes from 0.78 (+/- 0.7) g/cm(3) at zero pressure (3000 K) to 0.16 (+/- 0.04) g/cm(3) at 135 GPa (4000 K) for pure and alloyed compositions containing up to 25% iron. The simulations also predict a high-spin to low-spin transition of iron in the liquid ferropericlase gradually occurring over a pressure interval centered at 55 GPa (4000 K) accompanied by a density increase of 0.14 (+/- 0.02) g/cm(3). Temperature tends to widen the transition to higher pressure. The estimated iron partition coefficient between the solid and liquid ferropericlase varies from 0.3 to 0.6 over the pressure range of 23 to 135 GPa. Based on these results, an excess of as low as 5% iron dissolved in the liquid could cause the solid-liquid density crossover at conditions of the lowermost mantle.
引用
收藏
页数:7
相关论文