A review of branched-chain amino acids in lactation diets on sow and litter growth performance

被引:6
|
作者
Holen, Julia P. [1 ]
Tokach, Mike D. [1 ]
Woodworth, Jason C. [1 ]
DeRouchey, Joel M. [1 ]
Gebhardt, Jordan T. [2 ]
Titgemeyer, Evan C. [1 ]
Goodband, Robert D. [1 ]
机构
[1] Kansas State Univ, Coll Agr, Dept Anim Sci & Ind, Manhattan, KS 66506 USA
[2] Kansas State Univ, Coll Vet Med, Dept Diagnost Med Pathobiol, Manhattan, KS 66506 USA
关键词
branched-chain amino acids; lactation; litter performance; sow; TO-LYSINE RATIO; VALINE REQUIREMENT; PROTEIN; MOBILIZATION; TRANSPORT; IMPACT;
D O I
10.1093/tas/txac017
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Branched-chain amino acids (BCAA) are three essential amino acids (AA) for lactating sows; however, the effects of dietary Leu, Val, and Ile on sow and litter performance within the literature are equivocal. The BCAA are structurally similar and share the first steps of their catabolism pathway where Leu, Val, and Ile are transaminated through BCAA aminotransferase and irreversibly decarboxylated by the branched-chain alpha-ketoacid dehydrogenase complex. Although these steps are shared among BCAA, Leu is recognized as the primary stimulator due to Leu's greater affinity towards the enzymes compared to Val and Ile. Since the late 1990s, sows are producing larger and heavier litters and generally consume diets with greater concentrations of Leu and crystalline AA, which may create imbalances among dietary BCAA. Research conducted with growing-finishing pigs confirms that high concentrations of Leu can impair BCAA utilization and growth performance. However, the effects of BCAA on lactating sow and litter performance are not as clearly understood. Within mammary tissue, BCAA uptake is greater than milk output of BCAA since Val, Ile, and Leu are catabolized to form non-essential AA, lactose, fatty acids, and other metabolites. Within the mammary gland, BCAA aminotransferase activity is much higher than within skeletal muscle, liver, or small intestine. Thus, competition among the BCAA, namely, between Leu and Val, can significantly inhibit Val uptake within mammary tissue. Therefore, dietary modifications that mitigate BCAA competition may positively influence Val utilization for colostrum and milk synthesis. Little data exist on Ile and Leu requirements for modern lactating sows. Although Val requirements have been extensively researched in the last 25 yr, an ideal Val:Lys has not been consistently established across experiments. Some studies concluded that total Val concentrations above 120% of Lys optimized performance, whereas others determined that increasing SID Val:Lys from 55% to 136% did not improve piglet growth performance. Although increasing dietary Val positively influences fat and protein composition of colostrum and milk, litter growth during lactation is not always positively affected. Given the competition among BCAA for utilization within mammary tissue, research evaluating the Leu and Ile requirement of modern lactating sows is warranted to fully understand the influence and interactions of BCAA on reproductive and litter growth performance.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Dietary supplementation with branched-chain amino acids enhances milk production by lactating sows and the growth of suckling piglets
    Rezaei, Reza
    San Gabriel, Ana
    Wu, Guoyao
    JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, 2022, 13 (01)
  • [32] Dietary supplementation with branched-chain amino acids enhances milk production by lactating sows and the growth of suckling piglets
    Reza Rezaei
    Ana San Gabriel
    Guoyao Wu
    Journal of Animal Science and Biotechnology, 13
  • [33] The role of gut microbiota on regulation of growth and metabolism by branched-chain amino acids
    Pezeshki, Adel
    JOURNAL OF ANIMAL SCIENCE, 2024, 102 : 199 - 199
  • [34] The role of gut microbiota on regulation of growth and metabolism by branched-chain amino acids
    Pezeshki, Adel
    JOURNAL OF ANIMAL SCIENCE, 2024, 102 : 199 - 199
  • [35] Insulin resistance and the metabolism of branched-chain amino acids
    Jingyi Lu
    Guoxiang Xie
    Weiping Jia
    Wei Jia
    Frontiers of Medicine, 2013, 7 : 53 - 59
  • [36] Regulation of intestinal health by branched-chain amino acids
    Zhou, Hua
    Yu, Bing
    Gao, Jun
    Htoo, John Khun
    Chen, Daiwen
    ANIMAL SCIENCE JOURNAL, 2018, 89 (01) : 3 - 11
  • [37] Regulation of stringent factor by branched-chain amino acids
    Fang, Mingxu
    Bauer, Carl E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) : 6446 - 6451
  • [38] Insulin resistance and the metabolism of branched-chain amino acids
    Lu, Jingyi
    Xie, Guoxiang
    Jia, Weiping
    Jia, Wei
    FRONTIERS OF MEDICINE, 2013, 7 (01) : 53 - 59
  • [39] Hormonal and signaling role of branched-chain amino acids
    Nair, KS
    Short, KR
    JOURNAL OF NUTRITION, 2005, 135 (06) : 1547S - 1552S
  • [40] The Role of Branched-Chain Amino Acids and Branched-Chain α-Keto Acid Dehydrogenase Kinase in Metabolic Disorders
    Du, Chuang
    Liu, Wen-Jie
    Yang, Jing
    Zhao, Shan-Shan
    Liu, Hui-Xin
    FRONTIERS IN NUTRITION, 2022, 9