On nested Picard iterative integrators for highly oscillatory second-order differential equations

被引:2
作者
Wang, Yan [1 ,2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, 152 Luoyu Rd, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Highly oscillatory differential equations; Uniformly accurate; Error bound; Nested Picard iteration; Super convergence; Klein-Gordon equation; KLEIN-GORDON EQUATION; MODULATED FOURIER EXPANSIONS; MULTISCALE TIME INTEGRATORS; NONRELATIVISTIC LIMIT; ENERGY-CONSERVATION; NUMERICAL-METHODS; ERROR ANALYSIS; SCHEMES; SPACE;
D O I
10.1007/s11075-022-01317-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the construction and analysis of uniformly accurate (UA) nested Picard iterative integrators (NPI) for highly oscillatory second-order differential equations. The equations involve a dimensionless parameter epsilon is an element of (0, 1], and their solutions are highly oscillatory in time with wavelength at O(epsilon(2)), which brings severe burdens in numerical computation when epsilon << 1. In this work, we first propose two NPI schemes for solving a differential equation. The schemes are uniformly first- and second-order accurate for all epsilon is an element of (0, 1]. Moreover, they are super convergent when the time-step size is smaller than epsilon(2). Then, the schemes are generalized to a system of differential equations with the same uniform accuracies. Error bounds are rigorously established and numerical results are reported to confirm the error estimates.
引用
收藏
页码:1627 / 1651
页数:25
相关论文
共 42 条
  • [1] [Anonymous], 2003, COMMUN MATH SCI, V1, P423, DOI DOI 10.4310/CMS.2003.V1.N3.A3
  • [2] Ariel G, 2009, MATH COMPUT, V78, P929, DOI 10.1090/S0025-5718-08-02139-X
  • [3] Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime
    Bao, Weizhu
    Zhao, Xiaofei
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
  • [4] A UNIFORMLY ACCURATE MULTISCALE TIME INTEGRATOR PSEUDOSPECTRAL METHOD FOR THE KLEIN-GORDON EQUATION IN THE NONRELATIVISTIC LIMIT REGIME
    Bao, Weizhu
    Cai, Yongyong
    Zhao, Xiaofei
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2488 - 2511
  • [5] Uniformly Accurate Multiscale Time Integrators for Highly Oscillatory Second Order Differential Equations
    Bao, Weizhu
    Dong, Xuanchun
    Zhao, Xiaofei
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2014, 47 (02): : 111 - 150
  • [6] Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime
    Bao, Weizhu
    Dong, Xuanchun
    [J]. NUMERISCHE MATHEMATIK, 2012, 120 (02) : 189 - 229
  • [7] UNIFORMLY ACCURATE EXPONENTIAL-TYPE INTEGRATORS FOR KLEIN-GORDON EQUATIONS WITH ASYMPTOTIC CONVERGENCE TO THE CLASSICAL NLS SPLITTING
    Baumstark, Simon
    Faou, Erwan
    Schratz, Katharina
    [J]. MATHEMATICS OF COMPUTATION, 2018, 87 (311) : 1227 - 1254
  • [8] UNIFORMLY ACCURATE NESTED PICARD ITERATIVE INTEGRATORS FOR THE DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT REGIME
    Cai, Yongyong
    Wang, Yan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1602 - 1624
  • [9] Stroboscopic Averaging for the Nonlinear Schrodinger Equation
    Castella, F.
    Chartier, Ph.
    Mehats, F.
    Murua, A.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 519 - 559
  • [10] Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrodinger equations
    Chartier, Philippe
    Crouseilles, Nicolas
    Lemou, Mohammed
    Mehats, Florian
    [J]. NUMERISCHE MATHEMATIK, 2015, 129 (02) : 211 - 250