Trajectory design for mechanical control systems: From geometry to algorithms

被引:0
作者
Bullo, F [1 ]
机构
[1] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
来源
LAGRANGIAN AND HAMILTONIAN METHODS IN NONLINEAR CONTROL 2003 | 2003年
关键词
mechanical systems; trajectory planning; controllability; differential geometric methods; robotics;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trajectory design is a key problem in a vast array of robotic applications including the design of autonomous agile vehicles and of minimalist manipulators. This problem can be accurately formalized within the language of affine connections and of geometric control theory. This paper presents recent results on kinematic controllability and on oscillatory controls. The treatment emphasizes how to translate geometric controllability conditions into algorithms for generating and tracking trajectories. Copyright (C) 2003 IFAC.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 55 条
[1]  
ABRAHAM R, 1987, FND MECH
[2]  
[Anonymous], 1968, MATH SCI ENG
[3]  
[Anonymous], DYNAMICS CONTROL MEC
[4]  
[Anonymous], INTERDISCIPLINARY TE
[5]   Nonholonomic control of a three-DOF planar underactuated manipulator [J].
Arai, H ;
Tanie, K ;
Shiroma, N .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1998, 14 (05) :681-695
[6]  
ARIMOTO S, 1996, CONTROL THEORY NONLI, V49
[7]  
Baillieul J, 1999, MATHEMATICAL CONTROL THEORY, P322
[8]  
BAILLIEUL J, 1996, CONTROL HDB, P967
[9]   FEEDBACK LINEARIZATION OF ROBOT MANIPULATORS AND RIEMANNIAN CURVATURE [J].
BEDROSSIAN, NS ;
SPONG, MW .
JOURNAL OF ROBOTIC SYSTEMS, 1995, 12 (08) :541-552
[10]   NONHOLONOMIC CONTROL-SYSTEMS ON RIEMANNIAN-MANIFOLDS [J].
BLOCH, AM ;
CROUCH, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) :126-148