Compactifications whose cone can be embedded into their hyperspace of subcontinua

被引:1
作者
Villanueva, Hugo [1 ]
机构
[1] Univ Autonoma Chiapas, Fac Ciencias Fis & Matemat, Tuxtla Gutierrez 29050, Chiapas, Mexico
关键词
Compactification; Cone; Continuum; Contractible; Embedding; Hyperspace; CONTINUA;
D O I
10.1016/j.topol.2015.03.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a metric continuum X, let C(X) be the hyperspace of subcontinua of X and Cone(X) the topological cone of X. We say that a continuum X is cone-embeddable in C(X) provided that there is an embedding h from Cone(X) into C(X) such that h(x, 0) = {x} for each x in X. In this paper, we present some results concerning compactifications X of rays, union of two rays, and real lines which are cone-embeddable in C(X). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 115
页数:19
相关论文
共 7 条
[1]   RI-CONTINUA AND HYPERSPACES [J].
CHARATONIK, WJ .
TOPOLOGY AND ITS APPLICATIONS, 1986, 23 (03) :207-216
[2]   Nonblockers in hyperspaces [J].
Escobedo, Raul ;
de Jesus Lopez, Maria ;
Villanueva, Hugo .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (17) :3614-3618
[3]  
Illanes A., 1999, Pure Appl. Math., V216
[4]  
Nadler Jr S.B., 1972, FUND MATH, V75, P123
[5]  
Nadler Jr S. B., 1978, MONOGRAPHS TXB PURE, V49
[6]   CONTINUA WHOSE CONE AND HYPERSPACE ARE HOMEOMORPHIC [J].
NADLER, SB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 230 (JUN) :321-345
[7]  
ROGERS JT, 1973, GEN TOPOL APPL, V3, P283