Convergence analysis of refined instrumental variable method for continuous-time system identification

被引:27
|
作者
Liu, X. [1 ]
Wang, J. [1 ]
Zheng, W. X. [2 ]
机构
[1] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[2] Univ Western Sydney, Sch Comp & Math, Penrith, NSW 2751, Australia
来源
IET CONTROL THEORY AND APPLICATIONS | 2011年 / 5卷 / 07期
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
SERIES ANALYSIS; MODELS;
D O I
10.1049/iet-cta.2010.0211
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The refined instrumental variable method for continuous-time systems, abbreviated as the RIVC method, has been well accepted and used successfully for years in many disciplines. This study fills up a theoretical gap by proving the convergence property of the RIVC method: under some mild assumptions, the estimate from the RIVC method locally converges in one iteration to the true parameter in the asymptotic case. A numerical example is presented to demonstrate the convergence property of the RIVC method.
引用
收藏
页码:868 / 877
页数:10
相关论文
共 50 条
  • [31] Corrigendum: Consistency analysis of the Simplified Refined Instrumental Variable method for Continuous-time systems (Automatica (2020) 113, (S0005109819306302), (10.1016/j.automatica.2019.108767))
    Pan, Siqi
    González, Rodrigo A.
    Welsh, James S.
    Rojas, Cristian R.
    Automatica, 2022, 136
  • [32] Identification of continuous-time systems with unknown time delay bu nonlinear least-squares and instrumental variable methods
    Yang, ZJ
    Iemura, H
    Kanae, S
    Wada, K
    NEW TECHNOLOGIES FOR AUTOMATION OF METALLURGICAL INDUSTRY 2003, 2004, : 325 - 330
  • [33] Convergence analysis of instrumental variable recursive subspace identification algorithms
    Mercere, Guillaume
    Lovera, Marco
    AUTOMATICA, 2007, 43 (08) : 1377 - 1386
  • [34] A Continuous-Time Linear System Identification Method for Slowly Sampled Data
    Marelli, Damian
    Fu, Minyue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) : 2521 - 2533
  • [35] An optimal instrumental variable approach for continuous-time multiple input-single output fractional model identification
    Mayoufi, Abir
    Victor, Stephane
    Malti, Rachid
    Chetoui, Manel
    Aoun, Mohamed
    IFAC PAPERSONLINE, 2020, 53 (02): : 3701 - 3706
  • [36] Advanced Gauss Pseudospectral Method for Continuous-time Hammerstein System Identification
    He Ying
    Dai Ming-xiang
    Yang Xin-min
    Yi Wen-jun
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL WORKSHOP ON MATERIALS ENGINEERING AND COMPUTER SCIENCES (IWMECS 2015), 2015, 33 : 840 - 848
  • [37] A method for continuous-time identification of moored systems
    Beltrán-Aguedo, R
    Jordán, MA
    LATIN AMERICAN APPLIED RESEARCH, 2003, 33 (04) : 483 - 488
  • [38] A spreadsheet method for continuous-time model identification
    Aliane, Nourdine
    Fernandez, Javier
    Bemposta, Sergio
    MEASUREMENT, 2013, 46 (01) : 680 - 687
  • [39] IDENTIFICATION METHOD FOR LINEAR CONTINUOUS-TIME SYSTEMS
    Okou, Francis A.
    Nganga-Kouya, Donatien
    Amissanda, Arsene
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 647 - 653
  • [40] SOME MODIFICATIONS ON THE REFINED INSTRUMENTAL VARIABLE METHOD
    WANG, XL
    GEVERS, M
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1985, 16 (04) : 439 - 446