Convergence analysis of refined instrumental variable method for continuous-time system identification

被引:27
作者
Liu, X. [1 ]
Wang, J. [1 ]
Zheng, W. X. [2 ]
机构
[1] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[2] Univ Western Sydney, Sch Comp & Math, Penrith, NSW 2751, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
SERIES ANALYSIS; MODELS;
D O I
10.1049/iet-cta.2010.0211
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The refined instrumental variable method for continuous-time systems, abbreviated as the RIVC method, has been well accepted and used successfully for years in many disciplines. This study fills up a theoretical gap by proving the convergence property of the RIVC method: under some mild assumptions, the estimate from the RIVC method locally converges in one iteration to the true parameter in the asymptotic case. A numerical example is presented to demonstrate the convergence property of the RIVC method.
引用
收藏
页码:868 / 877
页数:10
相关论文
共 38 条
  • [1] Anderson T. W., 1971, STAT ANAL TIME SERIE
  • [2] [Anonymous], 1983, Instrumental VariableMethods for System Identifi cation
  • [3] Cuvillon L, 2006, P 14 IFAC S SYST IDE, P1264, DOI DOI 10.3182/20060329-3-AU-2901.00204
  • [4] An optimal IV technique for identifying continuous-time transfer function model of multiple input systems
    Garnier, H.
    Gilson, M.
    Young, P. C.
    Huselstein, E.
    [J]. CONTROL ENGINEERING PRACTICE, 2007, 15 (04) : 471 - 486
  • [5] Garnier H, 2008, ADV IND CONTROL, P1, DOI 10.1007/978-1-84800-161-9
  • [6] Continuous-time model identification from sampled data: implementation issues and performance evaluation
    Garnier, H
    Mensler, M
    Richard, A
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (13) : 1337 - 1357
  • [7] Garnier H., 2009, Proceedings of the 15th IFAC Symposium on System Identification, P735
  • [8] GARNIER H, 2002, 15 IFAC WORLD C BARC
  • [9] Gilson H., 2009, IFAC P, V42, P284
  • [10] Gilson M, 2004, P AMER CONTR CONF, P2846