Marching-on-in-Degree Time-Domain Integral Equation Solver for Transient Electromagnetic Analysis of Graphene

被引:2
|
作者
Wang, Quanquan [1 ,2 ]
Liu, Huazhong [1 ]
Wang, Yan [3 ]
Jiang, Zhaoneng [2 ,4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Dept Commun Engn, Nanjing 210003, Jiangsu, Peoples R China
[2] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Jiangsu, Peoples R China
[3] Qualcomm Business Management Shanghai Co Ltd, Shanghai 201203, Peoples R China
[4] Hefei Univ Technol, Dept Informat Engn, Hefei 230009, Anhui, Peoples R China
来源
COATINGS | 2017年 / 7卷 / 10期
基金
中国国家自然科学基金;
关键词
graphene; vector fitting; computational electromagnetics; time-domain integral equation; marching-on-in-degree; CONDUCTING STRUCTURES; LAGUERRE-POLYNOMIALS; MODES; EFIE;
D O I
10.3390/coatings7100170
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The marching-on-in-degree (MOD) time-domain integral equation (TDIE) solver for the transient electromagnetic scattering of the graphene is presented in this paper. Graphene's dispersive surface impedance is approximated using rational function expressions of complex conjugate pole-residue pairs with the vector fitting (VF) method. Enforcing the surface impedance boundary condition, TDIE is established and solved in the MOD scheme, where the temporal surface impedance is carefully convoluted with the current. Unconditionally stable transient solution in time domain can be ensured. Wide frequency band information is obtained after the Fourier transform of the time domain solution. Numerical results validate the proposed method.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Fast Time-Domain Analysis of a Metallic Enclosure With Arbitrary-Shaped Apertures by Marching-on-in-Degree
    Ataeian, Hadi
    Dehkhoda, Parisa
    Tavakoli, Ahad
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2018, 60 (03) : 638 - 646
  • [22] An Efficient Marching-on-in-Degree Solver of Surface Integral Equation for Multilayer Thin Medium-Coated Conductors
    He, Z.
    Ding, D. Z.
    Chen, R. S.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 : 1458 - 1461
  • [23] Time-domain integral equation methods for transient analysis
    Gomez, Martin
    Salinas, A.
    Rubio, Bretones
    IEEE Antennas and Propagation Magazine, 1992, 34 (03) : 15 - 23
  • [24] Transient Analysis of Few-layer Graphene Using Marching-on-in-degree TDIE
    Wang, Quanquan
    Song, Zukun
    Zhu, Jian
    Liu, Huazhong
    2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1, 2019,
  • [25] Fast Analysis of Transient Electromagnetic Scattering Using the Taylor Series Expansion-Enhanced Time-Domain Integral Equation Solver
    Cheng, G. S.
    Chen, R. S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (09) : 3943 - 3952
  • [26] Transient Analysis of Electromagnetic Scattering using Marching-on-in-Order Time-Domain Integral Equation Method with Curvilinear RWG Basis Functions
    Wang, Quan-quan
    Yan, Chao
    Shi, Yi-fei
    Ding, Da-zhi
    Chen, Ru-shan
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2011, 26 (05): : 429 - 436
  • [27] A Marching-on-in-Degree Solution of Volume Integral Equations for Transient Electromagnetic Scattering by Bi-Isotropic Objects
    Shi, Yan
    Jin, Jian-Ming
    ELECTROMAGNETICS, 2011, 31 (03) : 159 - 172
  • [28] MARCHING-ON-IN-DEGREE SOLUTION OF VOLUME INTEGRAL EQUATIONS FOR ANALYSIS OF TRANSIENT ELECTROMAGNETIC SCATTERING BY INHOMOGENEOUS DIELECTRIC BODIES WITH CONDUCTION LOSS
    Shi, Yan
    Jin, Jian-Ming
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2011, 53 (05) : 1104 - 1109
  • [29] Marching-on-in-Degree Method With Delayed Weighted Laguerre Polynomials for Transient Electromagnetic Scattering Analysis
    Ding, D. Z.
    Zhang, H. H.
    Chen, R. S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (04) : 1822 - 1827
  • [30] Time-domain integral-equation-based solver for transient and broadband problems in electromagnetics
    Boryssenko, AO
    Schaubert, DH
    ULTRA-WIDEBAND, SHORT-PULSE ELECTROMAGNETICS 6, 2003, : 239 - 249