Electron g-factor of valley states in realistic silicon quantum dots

被引:45
作者
Ruskov, Rusko [1 ]
Veldhorst, Menno [2 ]
Dzurak, Andrew S. [3 ]
Tahan, Charles [1 ]
机构
[1] Lab Phys Sci, 8050 Greenmead Dr, College Pk, MD 20740 USA
[2] Delft Univ Technol, QuTech & Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] Univ New South Wales, Sch Elect Engn & Telecommun, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
100 INVERSION LAYER; SPECTRUM; SI; BLOCKADE; QUBIT;
D O I
10.1103/PhysRevB.98.245424
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically model the spin-orbit interaction in silicon quantum dot devices, relevant for quantum computation and spintronics. Our model is based on a modified effective mass approach which properly accounts for spin-valley boundary conditions, derived from the interface symmetry, and should have applicability for other heterostructures. We show how the valley-dependent interface-induced spin-orbit 2D (3D) interaction, under the presence of an electric field that is perpendicular to the interface, leads to a g-factor renormalization in the two lowest valley states of a silicon quantum dot. These g-factors can change with electric field in opposite direction when intervalley spin-flip tunneling is favored over intravalley processes, explaining recent experimental results. We show that the quantum dot level structure makes only negligible higher order effects to the g-factor. We calculate the g-factor as a function of the magnetic field direction, which is sensitive to the interface symmetry. We identify spin-qubit dephasing sweet spots at certain directions of the magnetic field, where the g-factor renormalization is zeroed: these include perpendicular to the interface magnetic field, and also in-plane directions, the latter being defined by the interface-induced spin-orbit constants. The g-factor dependence on electric field opens the possibility for fast all-electric manipulation of an encoded, few electron spin qubit, without the need of a nanomagnet or a nuclear spin-background. Our approach of an almost fully analytic theory allows for a deeper physical understanding of the importance of spin-orbit coupling to silicon spin qubits.
引用
收藏
页数:19
相关论文
共 69 条
[1]   EFFECTIVE-MASS THEORY OF SEMICONDUCTOR HETEROJUNCTIONS AND SUPER-LATTICES [J].
ANDO, T ;
MORI, S .
SURFACE SCIENCE, 1982, 113 (1-3) :124-130
[2]   Validity of the single-particle description and charge noise resilience for multielectron quantum dots [J].
Bakker, Michiel A. ;
Mehl, Sebastian ;
Hiltunen, Tuukka ;
Harju, Ari ;
DiVincenzo, David P. .
PHYSICAL REVIEW B, 2015, 91 (15)
[3]   Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models [J].
Boykin, TB ;
Klimeck, G ;
Friesen, M ;
Coppersmith, SN ;
von Allmen, P ;
Oyafuso, F ;
Lee, S .
PHYSICAL REVIEW B, 2004, 70 (16) :1-12
[4]   Light absorption at a semiconductor interface [J].
Braginsky, LS .
PHYSICAL REVIEW B, 1998, 57 (12) :R6870-R6873
[5]   Electron spectrum of a semiconductor quantum dot influenced by an interface [J].
Braginsky, LS .
PHYSICAL REVIEW B, 1999, 60 (20) :R13970-R13973
[6]   Electrically driven electron spin resonance mediated by spin-valley-orbit coupling in a silicon quantum dot [J].
Corna, Andrea ;
Bourdet, Leo ;
Maurand, Romain ;
Crippa, Alessandro ;
Kotekar-Patil, Dharmraj ;
Bohuslavskyi, Heorhii ;
Lavieville, Romain ;
Hutin, Louis ;
Barraud, Sylvain ;
Jehl, Xavier ;
Vinet, Maud ;
De Franceschi, Silvano ;
Niquet, Yann-Michel ;
Sanquer, Marc .
NPJ QUANTUM INFORMATION, 2018, 4
[7]   Valley-Based Noise-Resistant Quantum Computation Using Si Quantum Dots [J].
Culcer, Dimitrie ;
Saraiva, A. L. ;
Koiller, Belita ;
Hu, Xuedong ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2012, 108 (12)
[8]   Interface roughness, valley-orbit coupling, and valley manipulation in quantum dots [J].
Culcer, Dimitrie ;
Hu, Xuedong ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2010, 82 (20)
[9]   Quantum dot spin qubits in silicon: Multivalley physics [J].
Culcer, Dimitrie ;
Cywinski, Lukasz ;
Li, Qiuzi ;
Hu, Xuedong ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2010, 82 (15)
[10]   ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR [J].
DATTA, S ;
DAS, B .
APPLIED PHYSICS LETTERS, 1990, 56 (07) :665-667