Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials

被引:37
作者
Maleki, Yaser [1 ]
Pourfayaz, Fathollah [1 ]
Mehrpooya, Mehdi [1 ]
机构
[1] Univ Tehran, Fac New Sci & Technol, Dept Renewable Energies & Environm, Tehran, Iran
关键词
PV; T-TEG-2PCM; Thermoelectric generator; Dual phase change materials; Energy efficiency; Exergy efficiency; Photovoltaic; thermal; ECONOMIC-ENVIRONMENTAL EVALUATION; COMPREHENSIVE ANALYSIS; COOLING TECHNIQUES; EXERGY ANALYSIS; ENERGY; PERFORMANCE; WATER; COLLECTORS; NANOFLUIDS; EFFICIENCY;
D O I
10.1016/j.renene.2022.11.037
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Photovoltaic (PV) cell technology has evolved dramatically since its invention. However, the adverse effects of the rise in the temperature of solar cells on electrical efficiency are still a problem, and the methods to control it are of great interest. Deploying thermoelectric generators (TEG) and phase change materials (PCM) have been scrutinized in recent years. PCMs impede the system from heating up by absorbing thermal energy at the melting temperature. TEGs exploit the temperature gradient in systems and generate electricity. In this experimental investigation, a PV/T-TEG-2PCM with two different PCM materials and metallic heat transfer enhancers; and another setup of PV/T-TEG were assembled, simultaneously examined, and operational parameters were measured. Performance of both systems from thermal and electrical energy and exergy perspectives were compared. Results showed that the proposed PV/T-TEG-2PCM with two PCMs was superior to the PV/T-TEG configuration in every area. The proposed PV/T-TEG-2PCM was able to decrease the average solar cell tem-perature and increase the TEG temperature gradient up to 89.4% and 1.2%, respectively. The mean electrical energy and total exergy efficiencies of the PV/T-TEG-2PCM system were 8.1% and 9.9% higher than the PV/T-TEG system, respectively.
引用
收藏
页码:202 / 215
页数:14
相关论文
共 46 条
[1]   Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells [J].
Abdolzadeh, M. ;
Ameri, M. .
RENEWABLE ENERGY, 2009, 34 (01) :91-96
[2]   Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study [J].
Aberoumand, Sadegh ;
Ghamari, Shahin ;
Shabani, Bahman .
SOLAR ENERGY, 2018, 165 :167-177
[3]   Thermal energy storage materials and systems for solar energy applications [J].
Alva, Guruprasad ;
Liu, Lingkun ;
Huang, Xiang ;
Fang, Guiyin .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 :693-706
[4]  
[Anonymous], TEHRAN WEATHER
[5]   Water flat plate PV-thermal collectors: A review [J].
Aste, Niccolo ;
del Pero, Claudio ;
Leonforte, Fabrizio .
SOLAR ENERGY, 2014, 102 :98-115
[6]   Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins [J].
Atkin, Peter ;
Farid, Mohammed M. .
SOLAR ENERGY, 2015, 114 :217-228
[7]   The maximum theoretical performance of unconcentrated solar photovoltaic and thermoelectric generator systems [J].
Bjork, R. ;
Nielsen, K. K. .
ENERGY CONVERSION AND MANAGEMENT, 2018, 156 :264-268
[8]   Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module [J].
Carmona, Mauricio ;
Bastos, Alberto Palacio ;
Garcia, Jose Doria .
RENEWABLE ENERGY, 2021, 172 :680-696
[9]   Photovoltaic thermal (PV/T) collectors: A review [J].
Charalambous, P. G. ;
Maidment, G. G. ;
Kalogirou, S. A. ;
Yiakoumetti, K. .
APPLIED THERMAL ENGINEERING, 2007, 27 (2-3) :275-286
[10]   Performance evaluation of a photoelectric-thermoelectric cogeneration hybrid system [J].
Dallan, Bruno S. ;
Schumann, Joseph ;
Lesage, Frederic J. .
SOLAR ENERGY, 2015, 118 :276-285