A sensor invariant atmospheric correction method for satellite images

被引:0
|
作者
Yin, Feng [1 ]
Gomez-Dans, J. [1 ,2 ]
Lewis, P. [1 ,2 ]
机构
[1] UCL, Dept Geog, London, England
[2] NCEO, Leicester, Leics, England
基金
欧盟地平线“2020”;
关键词
Atmospheric correction; data fusion; uncertainty; BIDIRECTIONAL REFLECTANCE; AEROSOL; MODIS; LAND; PRODUCTS; ALBEDO;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Land surface reflectance is the fundamental variable for the most of earth observation (EO) missions, and corrections of the atmospheric disturbs from the cloud, gaseous, aerosol help to get accurate spectral description of earth surface. Unlike the previous empirical ways of atmospheric correction, we propose a data fusion method for atmospheric correction of satellite images, with an initial attempt to include the uncertainty information from different data source. It takes advantage of the high temporal resolution of MODIS observations to get BRDF description of the earth surface as the prior information of the earth surface property, uses the ECMWF CAMS Near-realtime as the prior information of the atmospheric sates, to get optimal estimations of the atmospheric parameters. It guarantees the correction is consistent cross different satellites image tiles and even cross different sensors. The validations against the AERONET sites are also show high correlation at around 0.9, with a RMSE of about 0.02.
引用
收藏
页码:1804 / 1807
页数:4
相关论文
共 50 条
  • [31] On the accuracy and operation speed of RTM algorithms for atmospheric correction of satellite images in the visible and UV ranges
    Belov V.V.
    Tarasenkov M.V.
    Atmospheric and Oceanic Optics, 2014, 27 (1) : 54 - 61
  • [32] Fast over-land atmospheric correction of visible and near-infrared satellite images
    Nunes, A. S. L.
    Marcal, A. R. S.
    Vaughan, R. A.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (12) : 3523 - 3531
  • [33] The use of volcanic beach sand as a pseudo-invariant target for atmospheric correction using Landsat images
    Themistocleous, Kyriacos
    Hadjimitsis, Diofantos G.
    Retalis, Adrianos
    Chrysoulakis, Nektarios
    REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XVII; AND LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING VIII, 2012, 8534
  • [34] ATMOSPHERIC CORRECTION OF THERMAL INFRARED IMAGES
    LI, ZR
    MCDONNELL, MJ
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1988, 9 (01) : 107 - 121
  • [35] AN ATMOSPHERIC CORRECTION METHOD FOR THE AUTOMATIC RETRIEVAL OF SURFACE REFLECTANCES FROM TM IMAGES
    GILABERT, MA
    CONESE, C
    MASELLI, F
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (10) : 2065 - 2086
  • [37] Restoration of satellite images based on atmospheric MTF
    Kopeika, NS
    Sheayik, T
    Givati, Z
    Corse, N
    Dror, L
    Sadot, D
    Karnieli, A
    INFRARED SPACEBORNE REMOTE SENSING IV, 1996, 2817 : 106 - 117
  • [38] An Efficient Method Based on Wavelet for Fusion of Multi-Sensor Satellite Images
    Mangalraj, P.
    Rajuraykar
    Agrawal, Anupam
    2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES, 2015,
  • [39] The MPNA algorithm for atmospheric correction of satellite imagery
    Ouarzeddine, M
    Belhadj-Aissa, A
    REMOTE SENSING IN THE 21ST CENTURY: ECONOMIC AND ENVIRONMENTAL APPLICATIONS, 2000, : 299 - 303
  • [40] Integrated atmospheric correction of multispectral satellite imagery
    Robertson, B.C.
    Sharpe, B.
    Teillet, P.M.
    Digest - International Geoscience and Remote Sensing Symposium (IGARSS), 1989, 2 : 893 - 896