SOME PROPERTIES OF THE FRACTAL CONVOLUTION OF FUNCTIONS

被引:6
|
作者
Navascues, Maria A. [1 ]
Mohapatra, Ram N. [2 ]
Chand, Arya K. B. [3 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Escuela Ingn & Arquitectura, Zaragoza, Spain
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[3] Indian Inst Technol Madras, Dept Math, Madras, Tamil Nadu, India
关键词
fractals; iterated function systems; fractal interpolation functions; function spaces; stability; DIMENSION;
D O I
10.1515/fca-2021-0075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the fractal convolution of two maps f and g defined on a real interval as a way of generating a new function by means of a suitable iterated function system linked to a partition of the interval. Based on this binary operation, we consider the left and right partial convolutions, and study their properties. Though the operation is not commutative, the one-sided convolutions have similar (but not equal) characteristics. The operators defined by the lateral convolutions are both nonlinear, bi-Lipschitz and homeomorphic. Along with their self-compositions, they are Fre acute accent chet differentiable. They are also quasi-isometries under certain conditions of the scale factors of the iterated function system. We also prove some topological properties of the convolution of two sets of functions. In the last part of the paper, we study stability conditions of the dynamical systems associated with the one-sided convolution operators.
引用
收藏
页码:1735 / 1757
页数:23
相关论文
共 50 条
  • [41] Construction of orthogonal multi-wavelets using generalized-affine fractal interpolation functions
    Bouboulis, P.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (06) : 904 - 933
  • [42] ON THE BOUNDS OF SCALING FACTORS OF AFFINE FRACTAL INTERPOLATION FUNCTIONS
    Hsieh, Liang-Yu
    Luor, Dah-Chin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1321 - 1330
  • [43] New Type of Fractal Functions for the General Data Sets
    Verma, Manuj
    Priyadarshi, Amit
    ACTA APPLICANDAE MATHEMATICAE, 2023, 187 (01)
  • [44] Convolution powers of complex functions on Z
    Diaconis, Persi
    Saloff-Coste, Laurent
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (10) : 1106 - 1130
  • [45] Convolution powers of complex functions on Zd
    Randles, Evan
    Saloff-Coste, Laurent
    REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (03) : 1045 - 1121
  • [46] On the Convolution Powers of Complex Functions on Z
    Randles, Evan
    Saloff-Coste, Laurent
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (04) : 754 - 798
  • [47] Fundamental Sets of Fractal Functions
    M. A. Navascués
    A. K. B. Chand
    Acta Applicandae Mathematicae, 2008, 100 : 247 - 261
  • [48] New fractal functions on the sphere
    Akhtar, Md Nasim
    Prasad, M. Guru Prem
    Navascues, M. A.
    Mohapatra, R. N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22) : 3755 - 3764
  • [49] Quantum Bernstein fractal functions
    Vijender, N.
    Chand, A. K. B.
    Navascues, M. A.
    Sebastian, M., V
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (03)
  • [50] A REVIEW OF FRACTAL FUNCTIONS AND APPLICATIONS
    Wang, Xuefei
    Zhao, Chunxia
    Yuan, Xia
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (06)