Maximum Likelihood Estimation for Mixed Fractional Vasicek Processes

被引:3
|
作者
Cai, Chun-Hao [1 ]
Huang, Yin-Zhong [2 ]
Sun, Lin [3 ]
Xiao, Wei-Lin [4 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Guangzhou 510275, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[3] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Peoples R China
[4] Zhejiang Univ, Sch Management, Hangzhou 310058, Peoples R China
关键词
maximum likelihood estimator; mixed fractional Vasicek model; asymptotic theory; Laplace transform; PARAMETER-ESTIMATION; VOLATILITY;
D O I
10.3390/fractalfract6010044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the problem of estimating the drift parameters in the mixed fractional Vasicek model, which is an extended model of the traditional Vasicek model. Using the fundamental martingale and the Laplace transform, both the strong consistency and the asymptotic normality of the maximum likelihood estimators are studied for all H & ISIN;(0,1), H & NOTEQUAL;1/2. On the other hand, we present that the MLE can be simulated when the Hurst parameter H > 1/2.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Implementing and evaluating the nested maximum likelihood estimation technique
    Cousineau, Denis
    TUTORIALS IN QUANTITATIVE METHODS FOR PSYCHOLOGY, 2007, 3 (01): : 8 - 13
  • [42] Maximum-likelihood estimation of Rician distribution parameters
    Sijbers, J
    den Dekker, AJ
    Scheunders, P
    Van Dyck, D
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (03) : 357 - 361
  • [43] On expectations associated with maximum likelihood estimation in the Weibull distribution
    A. J. Watkins
    Journal of the Italian Statistical Society, 1998, 7 (1)
  • [44] Maximum likelihood estimation of partially observed diffusion models
    Kleppe, Tore Selland
    Yu, Jun
    Skaug, Hans J.
    JOURNAL OF ECONOMETRICS, 2014, 180 (01) : 73 - 80
  • [45] Maximum likelihood estimation for Gaussian process with nonlinear drift
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Shklyar, Sergiy
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (01): : 120 - 140
  • [46] Maximum Likelihood Parameter Estimation of CNC System Reliability
    Gu, Yan
    Wang, Yiqiang
    Zhou, Xiaoqin
    Yuan, Xiuhua
    MECHANICAL STRUCTURES AND SMART MATERIALS, 2014, 487 : 282 - +
  • [47] Range Estimation in Radar using Maximum Likelihood Estimator
    Sadia, Haleema
    Sherien, Sabahat
    Iqbal, Hafsa
    Zeeshan, Muhammad
    Khan, Aimal
    Rehman, Saad
    2017 20TH INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2017,
  • [48] Approximate maximum likelihood estimation of a threshold diffusion process
    Yu, Ting-Hung
    Tsai, Henghsiu
    Rachinger, Heiko
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142
  • [49] Parameter estimation using polynomial chaos and maximum likelihood
    Chen-Charpentier, Benito
    Stanescu, Dan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 336 - 346
  • [50] Maximum likelihood estimation for small noise multiscale diffusions
    Spiliopoulos K.
    Chronopoulou A.
    Statistical Inference for Stochastic Processes, 2013, 16 (3) : 237 - 266