The random matrix regime of Maronna's M-estimator with elliptically distributed samples

被引:40
作者
Couillet, Romain [1 ]
Pascal, Frederic [1 ]
Silverstein, Jack W. [2 ]
机构
[1] Univ Paris 11, CNRS, UMR 8506, Signaux & Syst Lab,L2S,CentraleSupelec, F-91192 Gif Sur Yvette, France
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Random matrix theory; Robust estimation; Elliptical distribution; LIMITING SPECTRAL DISTRIBUTION; COVARIANCE MATRICES; PERFORMANCE ANALYSIS; LARGEST EIGENVALUE; NO EIGENVALUES; LOCATION; SUPPORT; SIGNALS;
D O I
10.1016/j.jmva.2015.02.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article demonstrates that the robust scatter matrix estimator (C) over cap (N) is an element of C-NxN of a multivariate elliptical population x(1), ... ,x(n) is an element of C-N originally proposed by Maronna in 1976, and defined as the solution (when existent) of an implicit equation, behaves similar to a well-known random matrix model in the limiting regime where the population N and sample n sizes grow at the same speed. We show precisely that (C) over cap (N) is an element of C-NxN is defined for all n large with probability one and that, under some light hypotheses, parallel to(C) over cap (N) - (S) over cap (N)parallel to -> 0 almost surely in spectral norm, where (S) over cap (N) follows a classical random matrix model. As a corollary, the limiting eigenvalue distribution of (C) over cap (N) is derived. This analysis finds applications in the fields of statistical inference and signal processing. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 78
页数:23
相关论文
共 42 条
[11]   Robust Estimates of Covariance Matrices in the Large Dimensional Regime [J].
Couillet, Romain ;
Pascal, Frederic ;
Silverstein, Jack W. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) :7269-7278
[12]   Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators [J].
Couillet, Romain ;
McKay, Matthew .
JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 131 :99-120
[13]   Fluctuations of Spiked Random Matrix Models and Failure Diagnosis in Sensor Networks [J].
Couillet, Romain ;
Hachem, Walid .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (01) :509-525
[14]   A Deterministic Equivalent for the Analysis of Correlated MIMO Multiple Access Channels [J].
Couillet, Romain ;
Debbah, Merouane ;
Silverstein, Jack W. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) :3493-3514
[15]   Eigen-Inference for Energy Estimation of Multiple Sources [J].
Couillet, Romain ;
Silverstein, Jack W. ;
Bai, Zhidong ;
Debbah, Merouane .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) :2420-2439
[16]   Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices [J].
El Karoui, Noureddine .
ANNALS OF PROBABILITY, 2007, 35 (02) :663-714
[17]  
GregWAnderson Alice Guionnet, 2010, An Introduction to Random Matrices
[18]   A subspace estimator for fixed rank perturbations of large random matrices [J].
Hachem, Walid ;
Loubaton, Philippe ;
Mestre, Xavier ;
Najim, Jamal ;
Vallet, Pascal .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 :427-447
[19]  
HORN R. A., 1985, Matrix Analysis, DOI [10.1017/CBO9780511810817, DOI 10.1017/CBO9780511810817, 10.1017/cbo9780511810817]
[20]  
Huber P. J., 2011, Robust statistics, P1248, DOI DOI 10.1002/0471725250