High-order implicit Galerkin-Legendre spectral method for the two-dimensional Schrodinger equation

被引:3
作者
Liu, Wenjie [1 ]
Wu, Boying [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
基金
中国博士后科学基金;
关键词
Two-dimensional Schrodinger equation; Galerkin-Legendre spectral method; Implicit Runge-Kutta metho; Error estimate; COLLOCATION; SCHEMES;
D O I
10.1016/j.amc.2017.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose Galerkin-Legendre spectral method with implicit Runge-Kutta method for solving the unsteady two-dimensional Schrodinger equation with nonhomogeneous Dirichlet boundary conditions and initial condition. We apply a Galerkin-Legendre spectral method for discretizing spatial derivatives, and then employ the implicit RungeKutta method for the time integration of the resulting linear first-order system of ordinary differential equations in complex domain. We derive the spectral rate of convergence for the proposed method in the L-2-norm for the semidiscrete formulation. Numerical experiments show our formulation have high-order accuracy. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 18 条
[1]  
Abdur R, 2011, U POLITEH BUCH SER A, V73, P101
[2]   Numerical schemes for the simulation of the two-dimensional Schrodinger equation using non-reflecting boundary conditions [J].
Antoine, X ;
Besse, C ;
Mouysset, V .
MATHEMATICS OF COMPUTATION, 2004, 73 (248) :1779-1799
[3]   IMPLICIT RUNGE-KUTTA PROCESSES [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1964, 18 (85) :50-&
[4]  
Canuto C., 2012, Spectral Methods in Fluid Dynamics
[5]   The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation [J].
Dehghan, Mehdi ;
Mirzaei, Davould .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (6-8) :476-486
[6]   A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions [J].
Dehghan, Mehdi ;
Shokri, Ali .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (01) :136-146
[7]   The Sinc-collocation and Sinc-Galerkin methods for solving the two-dimensional Schrodinger equation with nonhomogeneous boundary conditions [J].
Dehghan, Mehdi ;
Emami-Naeini, Faezeh .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (22) :9379-9397
[8]   Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrodinger equations [J].
Gao, Zhen ;
Xie, Shusen .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (04) :593-614
[9]   A semi-discrete higher order compact scheme for the unsteady two-dimensional Schrodinger equation [J].
Kalita, Jiten C. ;
Chhabra, Puneet ;
Kumar, Sudhanshu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 197 (01) :141-149
[10]  
Lions J.L., 1972, Die Grundlehren der Mathematischen Wissenschaften, VI