Evaluation of hydrogen diffusion and trapping in nickel Alloy 625 by thermal desorption spectroscopy

被引:27
作者
Lu, Xu [1 ]
Depover, Tom [2 ]
Johnsen, Roy [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Mech & Ind Engn, Richard Birkelands vei 2B, N-7491 Trondheim, Norway
[2] Univ Ghent, Dept Mat Text & Chem Engn, Res Grp Sustainable Mat Sci, Technol Park 46, B-9052 Ghent, Belgium
关键词
Nickel Alloy 625; Hydrogen; Diffusion; Trapping; Thermal desorption spectroscopy; VACANCY FORMATION ENERGIES; REDUCING GRAIN-BOUNDARY; SIMULATING HYDROGEN; SOLUTE SEGREGATION; DISLOCATION LINE; EMBRITTLEMENT; STEELS; PERMEATION; MECHANISMS; FRACTURE;
D O I
10.1016/j.ijhydene.2022.07.094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents hydrogen diffusion and trapping in the nickel Alloy 625 by employing the hot extraction test and the thermal desorption spectroscopy (TDS) analysis. Combined with electrochemical permeation test, the impact of grain size and grain boundary carbide on hydrogen diffusion are investigated. The results manifeste that the effective hydrogen diffusivity can be expressed as D = 1.03 x 10(-7) exp (-46.44kJ/mol/RT) m(2)/s for the sample with a grain size of similar to 8 mu m. The diffusion activation energy ED for hydrogen is determined as 42.05 -48.10 kJ/mol. The activation energy E associated with interstitial sites/elastic field of dislocations and reversible traps is 17.92-20.73 kJ/mol and 24.87-27.13 kJ/mol, respectively. Moreover, the reduction in grain size and the presence of grain boundary carbide can lower hydrogen diffusivity by locally changing the diffusion and trapping behavior of hydrogen. (C) 2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:31673 / 31683
页数:11
相关论文
共 48 条
[1]   Hydrogen diffusion and trapping in a precipitation-hardened nickel-copper-aluminum alloy Monel K-500 (UNS N05500) [J].
Ai, Jia-He ;
Ha, Hung M. ;
Gangloff, Richard P. ;
Scully, John R. .
ACTA MATERIALIA, 2013, 61 (09) :3186-3199
[2]   HYDROGEN-ENHANCED LOCALIZED PLASTICITY - A MECHANISM FOR HYDROGEN-RELATED FRACTURE [J].
BIRNBAUM, HK ;
SOFRONIS, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 176 (1-2) :191-202
[3]  
Birnbaum HowardK., 1989, Mechanisms of hydrogen related fracture of metals
[4]   Accelerated diffusion of hydrogen along grain boundaries in nickel [J].
Brass, AM ;
Chanfreau, A .
ACTA MATERIALIA, 1996, 44 (09) :3823-3831
[5]   THERMAL-ANALYSIS OF TRAPPED HYDROGEN IN PURE IRON [J].
CHOO, WY ;
LEE, JY .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1982, 13 (01) :135-140
[6]   Critical assessment of the evaluation of thermal desorption spectroscopy data for duplex stainless steels: A combined experimental and numerical approach [J].
Claeys, L. ;
Cnockaert, V. ;
Depover, T. ;
De Graeve, I. ;
Verbeken, K. .
ACTA MATERIALIA, 2020, 186 :190-198
[7]   Electrochemical Hydrogen Charging of Duplex Stainless Steel [J].
Claeys, L. ;
Depover, T. ;
De Graeve, I. ;
Verbeken, K. .
CORROSION, 2019, 75 (08) :880-887
[8]  
Crank J., 1979, MATH DIFFUSION
[9]   THE MECHANISM OF HYDROGEN EVOLUTION ON IRON IN ACID SOLUTIONS BY DETERMINATION OF PERMEATION RATES [J].
DEVANATHAN, MAV ;
STACHURSKI, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1964, 111 (05) :619-623
[10]   Influence of charging conditions on simulated temperature-programmed desorption for hydrogen in metals [J].
Diaz, A. ;
Cuesta, I. I. ;
Martinez-Paneda, E. ;
Alegre, J. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (43) :23704-23720