CONVERGENCE THEOREM OF RELAXED QUASIMONOTONE VARIATIONAL INEQUALITY PROBLEMS

被引:0
作者
Kim, Jong Kyu [1 ]
Alesemi, Meshari [2 ]
Salahuddin [2 ]
机构
[1] Kyungnam Univ, Dept Math Educ, Changwon Gyeongnam 51767, South Korea
[2] Jazan Univ, Dept Math, Jazan 45142, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
Relaxed mu-quasimonotone variational inequality problems; algorithm; weak convergence; Hilbert spaces; EXTRAGRADIENT METHOD; COMPLEMENTARITY-PROBLEMS; WEAK-CONVERGENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggested a relaxed mu-quasimonotone variational inequality problems in Hilbert spaces, and we proved that the iterative sequence generated by an algorithm converges weakly to the solution of the variational inequalities.
引用
收藏
页码:2671 / 2678
页数:8
相关论文
共 22 条
[1]  
Afassinou Komi, 2020, Nonlinear Functional Analysis and Applications, V25, P491, DOI 10.22771/nfaa.2020.25.03.06
[2]  
Ahmad M. K., 2012, DISCONTINUITY NONLIN, V1, P225
[3]   On the generalized monotonicity of variational inequalities [J].
Bai, Min-Ru ;
Zhou, Shu-Zi ;
Ni, Gu-Yan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (06) :910-917
[4]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[5]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[6]   Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (4-5) :827-845
[7]   Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION, 2012, 61 (09) :1119-1132
[8]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[9]  
Ding XP, 2017, KOREAN J MATH, V25, P19, DOI 10.11568/kjm.2017.25.1.19
[10]  
Goebel K., 1984, Uniform Convexity, Hyperbolic Geometry, and Non-expansive Mappings, VVolume 83