Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering

被引:158
|
作者
Prakash, J. [1 ]
Prema, D. [1 ]
Venkataprasanna, K. S. [1 ]
Balagangadharan, K. [2 ]
Selvamurugan, N. [2 ]
Venkatasubbu, G. Devanand [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Nanotechnol, Kattankulathur 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Sch Bioengn, Dept Biotechnol, Kattankulathur 603203, Tamil Nadu, India
关键词
Chitosan; Hydroxyapatite; Graphene oxide; Alkaline phosphatase; Antibacterial activity; Biocompatibility; IN-VITRO; OSTEOGENIC DIFFERENTIATION; GOLD NANOPARTICLES; OXIDE; HYDROXYAPATITE; SCAFFOLDS; CELLS; BIOCOMPATIBILITY; ANTIBACTERIAL; OSTEOBLASTS;
D O I
10.1016/j.ijbiomac.2020.03.095
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, polymer based biomaterials are utilized in medical fields including surgical sutures, drug delivery devices, tissue supports and implants for interior bone fixation. However, polymer based implants leads to the formation of bio-films that are highly susceptible tomicrobial adhesion. In this study, we have fabricated Chitosan/Polyvinyl alcohol/Graphene oxide/Hydroxyapatite/gold films for potential orthopedic application. Graphene oxide/Hydroxyapatite/gold nanocomposite (GO/HAP/Au) was synthesized by simple hydrothermal method and GO/HAP/Au nanocomposite incorporated polymeric film was fabricated using gel casting method. The morphology, phase composition, crystalline structure and chemical state of the nanocomposite were characterized using as XRD, HR-TEM, FE-SEM and FT-IR. The bio-films were found to be biocompatible with mouse mesenchymal cells and it enhanced osteoblast differentiation as evidenced by more alkaline phosphatase activity at the cellular level. Hence, these results suggested that the developed nanocomposites films are osteogenic potential for treating bone and bone-related diseases. Antibacterial analysis of the films shows high inhibition zones against Gram positive and Gram Negative bacteria (Escherichia coli, streptococcus mutans, Staphylococcus aureus and Pseudomonas aeruginosa). Thus, the obtained nanocomposites bio-films are highly biocompatible and it can be used for bone regeneration application. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 71
页数:10
相关论文
共 50 条
  • [21] Cryogel biocomposite containing chitosan-gelatin/cerium-zinc doped hydroxyapatite for bone tissue engineering
    Wu, Shiqing
    Ma, Shengzhong
    Zhang, Cheng
    Cao, Guangqing
    Wu, Dongjin
    Gao, Chunzheng
    Lakshmanan, Sivalingam
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2020, 27 (10) : 2638 - 2644
  • [22] Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering
    Leite Lima, Paulo Autran
    Resende, Cristiane Xavier
    de Almeida Soares, Gloria Dulce
    Anselme, Karine
    Almeida, Luis Eduardo
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (06): : 3389 - 3395
  • [23] Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering
    Long, Teng
    Liu, Yu-Tai
    Tang, Sha
    Sun, Jin-Liang
    Guo, Ya-Ping
    Zhu, Zhen-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (08) : 1740 - 1748
  • [24] Synthesis and characterization of β-cyclodextrin/carboxymethyl chitosan/hydroxyapatite fused with date seed extract nanocomposite scaffolds for regenerative bone tissue engineering
    Jolly, Reshma
    Furkan, Mohammad
    Khan, Aijaz Ahmed
    Ahmed, Syed Sayeed
    Alam, Sharique
    Farooqi, Mohd Ahmadullah
    Khan, Rizwan Hasan
    Shakir, Mohammad
    MATERIALS ADVANCES, 2021, 2 (17): : 5723 - 5736
  • [25] Graphene oxide improves chitosan-based biomaterials with applications in bone tissue engineering
    Dinescu, Sorina
    Ignat, Simona
    Predoiu, Loredana
    Hermenean, Anca
    Ionita, Mariana
    Mladenov, Mitko
    Costache, Marieta
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2017, 22 (06): : 13108 - 13115
  • [26] Porous Chitosan/Graphene Oxide Biocomposites for Tissue Engineering
    Pandele, Andreea Madalina
    Ionita, Mariana
    Lungu, Adriana
    Vasile, Eugenia
    Zaharia, Catalin
    Iovu, Horia
    POLYMER COMPOSITES, 2017, 38 (02) : 363 - 370
  • [27] Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite
    Mohandes, F.
    Salavati-Niasari, M.
    RSC ADVANCES, 2014, 4 (49) : 25993 - 26001
  • [28] Cellulose acetate scaffold coated with a hydroxyapatite/graphene oxide nanocomposite for application in tissue engineering
    Menezes, Luan dos Santos
    da Rocha, Daniel Navarro
    Nonato, Renato Carajelescov
    Costa, Ana Rosa
    Morales, Ana Rita
    Correr-Sobrinho, Lourenco
    Correr, Americo Bortolazzo
    Neves, Jose Guilherme
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2024, 238 (07) : 793 - 802
  • [29] A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering
    Wang, Qian
    Chu, Yanyan
    He, Jianxin
    Shao, Weili
    Zhou, Yuman
    Qi, Kun
    Wang, Lidan
    Cui, Shizhong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 80 : 232 - 242
  • [30] Chitosan-hydroxyapatite-MWCNTs nanocomposite patch for bone tissue engineering applications
    Sanchez, Alejandro Gomez
    Prokhorov, Evgen
    Luna-Barcenas, Gabriel
    Doval, R. Roman
    Mendoza, S.
    Rojas-Chavez, H.
    Vargas, Julia Hernandez
    MATERIALS TODAY COMMUNICATIONS, 2021, 28