On the Clifford-Fourier Transform

被引:46
作者
De Bie, Hendrik [1 ]
Xu, Yuan [2 ]
机构
[1] Univ Ghent, Dept Math Anal, B-9000 Ghent, Belgium
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
REPRESENTATION;
D O I
10.1093/imrn/rnq288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For functions that take values in the Clifford algebra, we study the Clifford-Fourier transform on R-m defined with a kernel function K(x, y) := e(i pi/2) Gamma Ye(-i){x,y}, replacing the kernel e(i < x,y >) of the ordinary Fourier transform, where Gamma(y) :=- Sigma(j<k) e(j)e(k)(Y-j partial derivative(Yk) - Y-k partial derivative(Yj)). An explicit formula of K(x, y) is derived, which can be further simplified to a finite sum of Bessel functions when m is even. The closed formula of the kernel allows us to study the Clifford-Fourier transform and prove the inversion formula, for which a generalized translation operator and a convolution are defined and used.
引用
收藏
页码:5123 / 5163
页数:41
相关论文
共 25 条
[1]  
[Anonymous], MEMOIRS AM MATH SOC
[2]  
[Anonymous], ARXIV09073749
[3]  
[Anonymous], 1953, Higher transcendental functions
[4]  
[Anonymous], ARXIV09114725
[5]  
[Anonymous], 1992, CONTEMP MATH-SINGAP
[6]  
[Anonymous], ARXIVMATH0112033
[7]   On the integrability of a representation of sl(2, R) [J].
Ben Said, Salem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) :249-264
[8]   The Clifford-Fourier transform [J].
Brackx, F ;
De Schepper, N ;
Sommen, F .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (06) :669-681
[9]  
Brackx F., 1982, Clifford analysis
[10]   The two-dimensional Clifford-Fourier transform [J].
Brackx, Fred ;
De Schepper, Nele ;
Sommen, Frank .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 26 (1-2) :5-18