Increased salt and drought tolerance by D-ononitol production in transgenic Arabidopsis thaliana

被引:36
|
作者
Ahn, Chulhyun [1 ]
Park, Uhnmee [1 ]
Park, Phun Bum [1 ]
机构
[1] Univ Suwon, Dept Biosci & Biotechnol, Hwasungsi 445743, South Korea
关键词
Myo-inositol methyltransferase; Osmoprotectants; Abiotic stress; Transgenic Arabidopsis; D-Ononitol; ABIOTIC STRESS; SYNTHASE; ACCUMULATION; DEHYDRATION; EXPRESSION; RESPONSES;
D O I
10.1016/j.bbrc.2011.10.134
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The methylation of myo-inositol forms O-methyl inositol (D-ononitol) when plants are under abiotic stress in a reaction catalyzed by myo-inositol methyltransferase (IMT). D-Ononitol can serve as an osmoprotectant that prevents water loss in plants. We isolated the IMT cDNA from Glycine max and found by RT-PCR analysis that GmIMT transcripts are induced by drought and salinity stress treatments in the leaves of soybean seedlings. We confirmed the protein product of GmIMT and its substrate using a recombinant system in E. coli. Transgenic Arabidopsis plants over-expressing GmIMT displayed improved tolerance to dehydration stress treatment and to a lesser extent high salinity stress treatment. These results indicate that GmIMT is functional in heterologous Arabidopsis plants. (C) 2011 Published by Elsevier Inc.
引用
收藏
页码:669 / 674
页数:6
相关论文
共 50 条
  • [1] Increased salt and drought tolerance by D-pinitol production in transgenic Arabidopsis thaliana
    Ahn, Chul-Hyun
    Hossain, Md Amir
    Lee, Eunjeong
    Kanth, Bashista Kumar
    Park, Phun Bum
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 504 (01) : 315 - 320
  • [2] Maize ABP2 enhances tolerance to drought and salt stress in transgenic Arabidopsis
    Zong Na
    Li Xing-juan
    Wang Lei
    Wang Ying
    Wen Hong-tao
    Li Ling
    Zhang Xia
    Fan Yun-liu
    Zhao Jun
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (11) : 2379 - 2393
  • [3] Biosynthesis and accumulation of D-ononitol in Vigna umbellata in response to drought stress
    Wanek, W
    Richter, A
    PHYSIOLOGIA PLANTARUM, 1997, 101 (02) : 416 - 424
  • [4] Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants
    Kim, Eun Yu
    Seo, Young Sam
    Park, Ki You
    Kim, Soo Jin
    Kim, Woo Taek
    GENE, 2014, 552 (01) : 146 - 154
  • [5] Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis
    Peng Xianjun
    Ma Xingyong
    Fan Weihong
    Su Man
    Cheng Liqin
    Alam, Iftekhar
    Lee, Byung-Hyun
    Qi Dongmei
    Shen Shihua
    Liu Gongshe
    PLANT CELL REPORTS, 2011, 30 (08) : 1493 - 1502
  • [6] Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana
    Wang, Mingle
    Zhuang, Jing
    Zou, Zhongwei
    Li, Qinghui
    Xin, Huahong
    Li, Xinghui
    JOURNAL OF PLANT BIOLOGY, 2017, 60 (05) : 452 - 461
  • [7] The SINAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana
    Wu, Dandan
    Sun, Yinghao
    Wang, Hongfei
    Shi, He
    Su, Mingxing
    Shan, Hongyan
    Li, Tongtong
    Li, Qiuli
    GENE, 2018, 662 : 10 - 20
  • [8] Tolerance of transgenic Arabidopsis thaliana overexpressing apple MdAGO4.1 gene to drought and salt stress
    Liu, Mingxiao
    Li, Xiaohan
    Yin, Baoying
    Sun, Ye
    Liang, Bowen
    Li, Zhongyong
    Zhang, Xueying
    Xu, Jizhong
    Zhou, Shasha
    JOURNAL OF APPLIED BOTANY AND FOOD QUALITY, 2023, 96 : 11 - 19
  • [9] The Wheat Gene TaVQ14 Confers Salt and Drought Tolerance in Transgenic Arabidopsis thaliana Plants
    Cheng, Xinran
    Yao, Hui
    Cheng, Zuming
    Tian, Bingbing
    Gao, Chang
    Gao, Wei
    Yan, Shengnan
    Cao, Jiajia
    Pan, Xu
    Lu, Jie
    Ma, Chuanxi
    Chang, Cheng
    Zhang, Haiping
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [10] Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field
    Gomez Selvaraj, Michael
    Ishizaki, Takuma
    Valencia, Milton
    Ogawa, Satoshi
    Dedicova, Beata
    Ogata, Takuya
    Yoshiwara, Kyouko
    Maruyama, Kyonoshin
    Kusano, Miyako
    Saito, Kazuki
    Takahashi, Fuminori
    Shinozaki, Kazuo
    Nakashima, Kazuo
    Ishitani, Manabu
    PLANT BIOTECHNOLOGY JOURNAL, 2017, 15 (11) : 1465 - 1477