A Random Finite Set Sensor Control Approach for Vision-based Multi-object Search-While-Tracking

被引:0
作者
LeGrand, Keith A. [1 ]
Zhu, Pingping [2 ]
Ferrari, Silvia [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Lab Intelligent Syst & Controls LISC, Ithaca, NY 14853 USA
[2] Marshall Univ, Dept Elect Engn, Huntington, WV USA
来源
2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION) | 2021年
关键词
sensor control; information gain; multi-object tracking; random finite set; cell multi-Bernoulli; bounded field-of-view; Kullback-Leibler divergence;
D O I
暂无
中图分类号
学科分类号
摘要
Through automatic control, intelligent sensors can be manipulated to obtain the most informative measurements about objects in their environment. In object tracking applications, sensor actions are chosen based on the predicted improvement in estimation accuracy, or information gain. Although random finite set theory provides a formalism for measuring information gain for multi-object tracking problems, predicting the information gain remains computationally challenging. This paper presents a new tractable approximation of the random finite set expected information gain applicable to multi-object search and tracking. The approximation presented in this paper accounts for noisy measurements, missed detections, false alarms, and object appearance/disappearance. The effectiveness of the approach is demonstrated through a ground vehicle tracking problem using real video data from a remote optical sensor.
引用
收藏
页码:636 / 643
页数:8
相关论文
共 29 条
[1]  
LeGrand KA, 2022, Arxiv, DOI [arXiv:2108.11236, 10.1109/TPAMI.2022.3223856, DOI 10.1109/TPAMI.2022.3223856]
[2]   Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Dinh Phung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) :6554-6567
[3]   Fast approximated power iteration subspace tracking [J].
Badeau, R ;
David, B ;
Richard, GL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) :2931-2941
[4]  
Bar-Shalom Y., 2011, Tracking and Data Fusion
[5]  
Beard M, 2015, 2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P937
[6]  
Bostrom-Rost P., 2021, IEEE T AERO ELEC SYS
[7]   Information-Driven Sensor Path Planning by Approximate Cell Decomposition [J].
Cai, Chenghui ;
Ferrari, Silvia .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (03) :672-689
[8]  
Castañón DA, 2008, SIGNALS COMMUN TECHN, P7, DOI 10.1007/978-0-387-49819-5_2
[9]  
Ferrari S., 2021, INFORM DRIVEN PLANNI
[10]   Search-Detect-Track Sensor Allocation for Geosynchronous Space Objects [J].
Gehly, Steven ;
Jones, Brandon A. ;
Axelrad, Penina .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (06) :2788-2808