On groups with automorphisms whose fixed points are Engel

被引:5
作者
Acciarri, Cristina [1 ]
Shumyatsky, Pavel [1 ]
da Silveira, Danilo Sancao [2 ]
机构
[1] Univ Brasilia, Dept Math, DR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Goias, Dept Math, BR-75704020 Catalao, Go, Brazil
关键词
Profinite groups; Automorphisms; Centralizers; Engel elements; COPRIME AUTOMORPHISMS; FINITE-GROUPS; LIE-ALGEBRAS; PROFINITE GROUPS; P-GROUPS; IDENTITIES;
D O I
10.1007/s10231-017-0680-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study finite and profinite groups admitting an action by an elementary abelian group under which the centralizers of automorphisms consist of Engel elements. In particular, we prove the following theorems. Let q be a prime and A an elementary abelian q-group of order q(2) acting coprimely on a profinite group G. Assume that all elements in C-G(a) are Engel in G for each a is an element of A(#). Then, G is locally nilpotent. Let q be a prime, n a positive integer and A an elementary abelian group of order q(3) acting coprimely on a finite group G. Assume that for each a is an element of A(#) every element of C-G(a) is n-Engel in C-G(a). Then, the group G is k-Engel for some {n, q}-bounded number
引用
收藏
页码:307 / 316
页数:10
相关论文
共 27 条
[1]   Profinite groups and the fixed points of coprime automorphisms [J].
Acciarri, Cristina ;
Shumyatsky, Pavel .
JOURNAL OF ALGEBRA, 2016, 452 :188-195
[2]   Identities of graded algebras [J].
Bahturin, YA ;
Zaicev, MV .
JOURNAL OF ALGEBRA, 1998, 205 (01) :1-12
[3]  
Dixon J. D., 1991, ANAL PRO P GROUPS, V157
[4]   ENGEL STRUCTURE OF LINEAR GROUPS [J].
GRUENBERG, KW .
JOURNAL OF ALGEBRA, 1966, 3 (03) :291-+
[5]  
Huppert B., 1967, Grund. Math. Wiss., VI
[6]  
Huppert B., 1982, FINITE GROUPS 2
[7]  
Kelly J.L., 1955, General Topology
[8]  
Khukhro E. I., 1993, NILPOTENT GROUPS THE
[9]   Bounding the exponent of a finite group with automorphisms [J].
Khukhro, EI ;
Shumyatsky, P .
JOURNAL OF ALGEBRA, 1999, 212 (01) :363-374
[10]  
Lazard M., 1965, PUB MATH IHES, V26, P389