Singularities of maximal surfaces

被引:95
作者
Fujimori, Shoichi [4 ]
Saji, Kentaro [3 ]
Umehara, Masaaki [2 ]
Yamada, Kotaro [1 ]
机构
[1] Kyushu Univ, Fac Math, Higashi Ku, Fukuoka 8128581, Japan
[2] Osaka Univ, Grad Sch Sci, Dept Math, Osaka 5600043, Japan
[3] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[4] Fukuoka Univ Educ, Dept Math, Fukuoka 8114192, Japan
基金
日本学术振兴会;
关键词
maximal surfaces; Minkowski space; de Sitter space; cuspidal cross cap;
D O I
10.1007/s00209-007-0250-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the singularities of spacelike maximal surfaces in Lorentz-Minkowski 3-space generically consist of cuspidal edges, swallowtails and cuspidal cross caps. The same result holds for spacelike mean curvature one surfaces in de Sitter 3-space. To prove these, we shall give a simple criterion for a given singular point on a surface to be a cuspidal cross cap.
引用
收藏
页码:827 / 848
页数:22
相关论文
共 16 条
[1]  
Arnold V. I., 2012, CLASSIFICATION CRITI, V1
[2]  
BRYANT RL, 1987, ASTERISQUE, P321
[4]   The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space [J].
Fernández, I ;
López, FJ ;
Souam, R .
MATHEMATISCHE ANNALEN, 2005, 332 (03) :605-643
[5]  
FUJIMORI S, 1973, ARXIV07060973
[6]  
FUJIMORI S, 2006, HOKKAIDO MATH J, V35, P289
[7]  
Golubitsky M., 1973, GRADUATE TEXTS MATH, V14
[8]   Singularities of improper affine spheres and surfaces of constant Gaussian curvature [J].
Ishikawa, GO ;
Machida, Y .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2006, 17 (03) :269-293
[9]  
IZUMIYA S, 2003, HOROSPHERICAL FLAT S
[10]   Circular surfaces [J].
Izumiya, Shyuichi ;
Saji, Kentaro ;
Takeuchi, Nobuko .
ADVANCES IN GEOMETRY, 2007, 7 (02) :295-313