Radiation resistant LGAD design

被引:82
作者
Ferrero, M. [1 ]
Arcidiacono, R. [1 ,2 ]
Barozzi, M. [3 ,5 ]
Boscardin, M. [3 ,5 ]
Cartiglia, N. [1 ]
Dalla Betta, G. F. [4 ,5 ]
Galloway, Z. [7 ]
Mandurrino, M. [1 ]
Mazza, S. [7 ]
Paternoster, G. [3 ,5 ]
Ficorella, F. [3 ,5 ]
Pancheri, L. [4 ,5 ]
Sadrozinski, H-F W. [7 ]
Siviero, F. [1 ,6 ]
Sola, V. [1 ,6 ]
Staiano, A. [1 ]
Seiden, A. [7 ]
Tornago, M. [1 ,6 ]
Zhao, Y. [7 ]
机构
[1] INFN, Turin, Italy
[2] Univ Piemonte Orientale, Vercelli, Italy
[3] Fdn Bruno Kessler, Trento, Italy
[4] Univ Trento, Trento, Italy
[5] INFN, TIFPA, Via Sommarive 18, I-38123 Povo, TN, Italy
[6] Univ Torino, Turin, Italy
[7] Univ Calif Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA
基金
欧盟地平线“2020”;
关键词
Silicon; Timing; LGAD; Acceptor removal; SILICON; IRRADIATION; HARDNESS;
D O I
10.1016/j.nima.2018.11.121
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, we report on the radiation resistance of 50-micron thick Low Gain Avalanche Diodes (LGAD) manufactured at the Fondazione Bruno Kessler (FBK) employing different dopings in the gain layer. LGADs with a gain layer made of Boron, Boron low-diffusion, Gallium, Carbonated Boron and Carbonated Gallium have been designed and successfully produced at FBK. These sensors have been exposed to neutron fluences up to phi(n) similar to 3.10(16) n/cm(2) and to proton fluences up to phi(p) similar to 9.10(15) p/cm(2) to test their radiation resistance. The experimental results show that Gallium-doped LGAD are more heavily affected by the initial acceptor removal mechanism than those doped with Boron, while the addition of Carbon reduces this effect both for Gallium and Boron doping. The Boron low-diffusion gain layer shows a higher radiation resistance than that of standard Boron implant, indicating a dependence of the initial acceptor removal mechanism upon the implant density.
引用
收藏
页码:16 / 26
页数:11
相关论文
共 22 条
[1]  
[Anonymous], TREDI2017
[2]  
[Anonymous], 2017, ARXIV170704961
[3]  
Balbuena J., CERNLHCC2010012
[4]   Weightfield2: A fast simulator for silicon and diamond solid state detector [J].
Cenna, Francesca ;
Cartiglia, N. ;
Friedl, M. ;
Kolbinger, B. ;
Sadrozinski, H. F. -W. ;
Seiden, A. ;
Zatserklyaniy, Andriy ;
Zatserklyaniy, Anton .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 796 :149-153
[5]  
Gkotse B., IRRADIATION FACILITI
[6]  
Henderson B., 2013, NATO SCI SERIES B
[7]   Simulation of non-ionising energy loss and defect formation in silicon [J].
Huhtinen, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 491 (1-2) :194-215
[8]   Strategies for improving radiation tolerance of Si space solar cells [J].
Khan, A ;
Yamaguchi, M ;
Ohshita, Y ;
Dharmaraso, N ;
Araki, K ;
Khanh, VT ;
Itoh, H ;
Ohshima, T ;
Imaizumi, M ;
Matsuda, S .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 75 (1-2) :271-276
[9]   Radiation hardness of gallium doped low gain avalanche detectors [J].
Kramberger, G. ;
Carulla, M. ;
Cavallaro, E. ;
Cindro, V ;
Flores, D. ;
Galloway, Z. ;
Grinstein, S. ;
Hidalgo, S. ;
Fadeyev, V ;
Lange, J. ;
Mandic, I ;
Merlos, A. ;
McKinney-Martinez, F. ;
Mikuz, M. ;
Quirion, D. ;
Pellegrini, G. ;
Petek, M. ;
Sadrozinski, H. F-W ;
Seiden, A. ;
Zavrtanik, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 898 :53-59
[10]   Radiation hardness of thin Low Gain Avalanche Detectors [J].
Kramberger, G. ;
Carulla, M. ;
Cavallaro, E. ;
Cindro, V ;
Flores, D. ;
Galloway, Z. ;
Grinstein, S. ;
Hidalgo, S. ;
Fadeyev, V ;
Lange, J. ;
Mandic, I ;
Medin, G. ;
Merlos, A. ;
McKinney-Martinez, F. ;
Mikuz, M. ;
Quirion, D. ;
Pellegrini, G. ;
Petek, M. ;
Sadrozinski, H. F-W ;
Seiden, A. ;
Zavrtanik, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 891 :68-77