Evaluation of a fully automated bioinformatics tool to predict antibiotic resistance from MRSA genomes

被引:9
作者
Kumar, Narender [1 ]
Raven, Kathy E. [1 ]
Blane, Beth [1 ]
Leek, Danielle [1 ]
Brown, Nicholas M. [2 ]
Bragin, Eugene [3 ,4 ]
Rhodes, Paul A. [3 ,4 ]
Parkhill, Julian [5 ]
Peacock, Sharon J. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Med, Addenbrookes Hosp, Box 157,Hills Rd, Cambridge CB2 0QQ, England
[2] Publ Hlth England, Clin Microbiol & Publ Hlth Lab, Cambridge CB2 0QQ, England
[3] Next Gen Diagnost LLC NGD, Mountain View, CA USA
[4] Wellcome Genome Campus, Cambridge CB10 1SA, England
[5] Univ Cambridge, Dept Vet Med, Cambridge, England
基金
英国惠康基金;
关键词
ANTIMICROBIAL RESISTANCE; STAPHYLOCOCCUS;
D O I
10.1093/jac/dkz570
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Objectives: The genetic prediction of phenotypic antibiotic resistance based on analysis of WGS data is becoming increasingly feasible, but a major barrier to its introduction into routine use is the lack of fully automated interpretation tools. Here, we report the findings of a large evaluation of the Next Gen Diagnostics (NGD) automated bioinformatics analysis tool to predict the phenotypic resistance of MRSA. Methods: MRSA-positive patients were identified in a clinical microbiology laboratory in England between January and November 2018. One MRSA isolate per patient together with all blood culture isolates (total n = 778) were sequenced on the Illumina MiniSeq instrument in batches of 21 clinical MRSA isolates and three controls. Results: The NGD system activated post-sequencing and processed the sequences to determine susceptible/resistant predictions for 11 antibiotics, taking around 11 minutes to analyse 24 isolates sequenced on a single sequencing run. NGD results were compared with phenotypic susceptibility testing performed by the clinical laboratory using the disc diffusion method and EUCAST breakpoints. Following retesting of discrepant results, concordance between phenotypic results and NGD genetic predictions was 99.69%. Further investigation of 22 isolate genomes associated with persistent discrepancies revealed a range of reasons in 12 cases, but no cause could be found for the remainder. Genetic predictions generated by the NGD tool were compared with predictions generated by an independent research-based informatics approach, which demonstrated an overall concordance between the two methods of 99.97%. Conclusions: We conclude that the NGD system provides rapid and accurate prediction of the antibiotic susceptibility of MRSA.
引用
收藏
页码:1117 / 1122
页数:6
相关论文
共 21 条
  • [1] Whole-Genome Sequencing for Routine Pathogen Surveillance in Public Health: a Population Snapshot of Invasive Staphylococcus aureus in Europe
    Aanensen, David M.
    Feil, Edward J.
    Holden, Matthew T. G.
    Dordel, Janina
    Yeats, Corin A.
    Fedosejev, Artemij
    Goater, Richard
    Castillo-Ramirez, Santiago
    Corander, Jukka
    Colijn, Caroline
    Chlebowicz, Monika A.
    Schouls, Leo
    Heck, Max
    Pluister, Gerlinde
    Ruimy, Raymond
    Kahlmeter, Gunnar
    Ahman, Jenny
    Matuschek, Erika
    Friedrich, Alexander W.
    Parkhill, Julian
    Bentley, Stephen D.
    Spratt, Brian G.
    Grundmann, Hajo
    [J]. MBIO, 2016, 7 (03):
  • [2] Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing
    Allix-Beguec, Caroline
    Arandjelovic, Irena
    Bi, Lijun
    Beckert, Patrick
    Bonnet, Maryline
    Bradley, Phelim
    Cabibbe, Andrea M.
    Cancino-Munoz, Irving
    Caulfield, Mark J.
    Chaiprasert, Angkana
    Cirillo, Daniela M.
    Clifton, David
    Comas, Inaki
    Crook, Derrick W.
    De Filippo, Maria R.
    de Neeling, Han
    Diel, Roland
    Drobniewski, Francis A.
    Faksri, Kiatichai
    Farhat, Maha R.
    Fleming, Joy
    Fowler, Philip
    Fowler, Tom A.
    Gao, Qian
    Gardy, Jennifer
    Gascoyne-Binzi, Deborah
    Gibertoni-Cruz, Ana-Luiza
    Gil-Brusola, Ana
    Golubchik, Tanya
    Gonzalo, Ximena
    Grandjean, Louis
    He, Guangxue
    Guthrie, Jennifer L.
    Hoosdally, Sarah
    Hunt, Martin
    Iqbal, Zamin
    Ismail, Nazir
    Johnston, James
    Khanzada, Faisal M.
    Khor, Chiea C.
    Kohl, Thomas A.
    Kong, Clare
    Lipworth, Sam
    Liu, Qingyun
    Maphalala, Gugu
    Martinez, Elena
    Mathys, Vanessa
    Merker, Matthias
    Miotto, Paolo
    Mistry, Nerges
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (15) : 1403 - 1415
  • [3] Frequent Undetected Ward-Based Methicillin-Resistant Staphylococcus aureus Transmission Linked to Patient Sharing Between Hospitals
    Auguet, Olga Tosas
    Stabler, Richard A.
    Betley, Jason
    Preston, Mark D.
    Dhaliwal, Mandeep
    Gaunt, Michael
    Ioannou, Avgousta
    Desai, Nergish
    Karadag, Tacim
    Batra, Rahul
    Otter, Jonathan A.
    Marbach, Helene
    Clark, Taane G.
    Edgeworth, Jonathan D.
    [J]. CLINICAL INFECTIOUS DISEASES, 2018, 66 (06) : 840 - 848
  • [4] Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens
    Baker, Stephen
    Thomson, Nicholas
    Weill, Francois-Xavier
    Holt, Kathryn E.
    [J]. SCIENCE, 2018, 360 (6390) : 733 - 738
  • [5] Rapid sequencing of MRSA direct from clinical plates in a routine microbiology laboratory
    Blane, Beth
    Raven, Kathy E.
    Leek, Danielle
    Brown, Nicholas
    Parkhill, Julian
    Peacock, Sharon J.
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2019, 74 (08) : 2153 - 2156
  • [6] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [7] Fusidic Acid Resistance Rates and Prevalence of Resistance Mechanisms among Staphylococcus spp. Isolated in North America and Australia, 2007-2008
    Castanheira, Mariana
    Watters, Amy A.
    Bell, Jan M.
    Turnidge, John D.
    Jones, Ronald N.
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2010, 54 (09) : 3614 - 3617
  • [8] Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community
    Coll, Francesc
    Harrison, Ewan M.
    Toleman, Michelle S.
    Reuter, Sandra
    Raven, Kathy E.
    Blane, Beth
    Palmer, Beverley
    Kappeler, A. Ruth M.
    Brown, Nicholas M.
    Torok, M. Estee
    Parkhill, Julian
    Peacock, Sharon J.
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (413)
  • [9] Antimicrobial Resistance Prediction in PATRIC and RAST
    Davis, James J.
    Boisvert, Sebastien
    Brettin, Thomas
    Kenyon, Ronald W.
    Mao, Chunhong
    Olson, Robert
    Overbeek, Ross
    Santerre, John
    Shukla, Maulik
    Wattam, Alice R.
    Will, Rebecca
    Xia, Fangfang
    Stevens, Rick
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] Whole-Genome Sequencing Reveals the Contribution of Long-Term Carriers in Staphylococcus aureus Outbreak Investigation
    Gordon, N. C.
    Pichon, B.
    Golubchik, T.
    Wilson, D. J.
    Paul, J.
    Blanc, D. S.
    Cole, K.
    Collins, J.
    Cortes, N.
    Cubbon, M.
    Gould, F. K.
    Jenks, P. J.
    Llewelyn, M.
    Nash, J. Q.
    Orendi, J. M.
    Paranthaman, K.
    Price, J. R.
    Senn, L.
    Thomas, H. L.
    Wyllie, S.
    Crook, D. W.
    Peto, T. E. A.
    Walker, A. S.
    Kearns, A. M.
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2017, 55 (07) : 2188 - 2197