Modeling of Laboratory Steam Methane Reforming and CO2 Methanation Reactors

被引:19
|
作者
Costamagna, Paola [1 ]
Pugliese, Federico [2 ]
Cavattoni, Tullio [3 ]
Busca, Guido [2 ,3 ]
Garbarino, Gabriella [2 ,3 ]
机构
[1] Univ Genoa, Dept Chem & Ind Chem, Via Dodecaneso 31, I-16146 Genoa, Italy
[2] Univ Genoa, Dept Civil Chem & Environm Engn, Chem Engn Pole, Via Opera Pia 15, I-16145 Genoa, Italy
[3] UdR Genova, INSTM, Via Dodecaneso 31, I-16146 Genoa, Italy
关键词
chemical reactor modeling; CO2; methanation; hydrogen; Ni-based catalysts; Power-to-X; steam methane reforming; WATER-GAS SHIFT; DIRECT NUMERICAL-SIMULATION; HEAT-TRANSFER; THERMAL-CONDUCTIVITY; NATURAL-GAS; PACKED-BEDS; KINETICS; DISPERSION; CATALYST; FLOW;
D O I
10.3390/en13102624
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To support the interpretation of the experimental results obtained from two laboratory-scale reactors, one working in the steam methane reforming (SMR) mode, and the other in the CO2 hydrogenation (MCO2) mode, a steady-state pseudo-homogeneous 1D non-isothermal packed-bed reactor model is developed, embedding the classical Xu and Froment local kinetics. The laboratory reactors are operated with three different catalysts, two commercial and one homemade. The simulation model makes it possible to identify and account for thermal effects occurring inside the catalytic zone of the reactor and along the exit line. The model is intended to guide the development of small size SMR and MCO2 reactors in the context of Power-to-X (P2X) studies.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Study on CO2 Methanation and Steam Methane Reforming over Commercial Ni/Calcium Aluminate Catalysts
    Garbarino, Gabriella
    Pugliese, Federico
    Cavattoni, Tullio
    Busca, Guido
    Costamagna, Paola
    ENERGIES, 2020, 13 (11)
  • [2] On the Modeling of Steam Methane Reforming
    Mokheimer, Esmail M. A.
    Hussain, Muhammad Ibrar
    Ahmed, Shakeel
    Habib, Mohamed A.
    Al-Qutub, Amro A.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2015, 137 (01):
  • [3] Utilization of CO2 arising from methane steam reforming reaction: Use of CO2 membrane and heterotic reactors
    Lee, Sunggeun
    Lim, Hankwon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 91 : 201 - 212
  • [4] Modeling of nickel-based hydrotalcite catalyst coated on heat exchanger reactors for CO2 methanation
    Vazquez, Francisco Vidal
    Kihlman, Johanna
    Mylvaganam, Ajenthan
    Simell, Pekka
    Koskinen-Soivi, Mari-Leena
    Alopaeus, Ville
    CHEMICAL ENGINEERING JOURNAL, 2018, 349 : 694 - 707
  • [5] CO2 Methanation in Microstructured Reactors - Catalyst Development and Process Design
    Neuberg, Stefan
    Pennemann, Helmut
    Shanmugam, Vetrivel
    Thiermann, Raphael
    Zapf, Ralf
    Gac, Wojciech
    Greluk, Magdalena
    Zawadzki, Witold
    Kolb, Gunther
    CHEMICAL ENGINEERING & TECHNOLOGY, 2019, 42 (10) : 2076 - 2084
  • [6] On the Modeling of Continuous H2 Production by Sorption-Enhanced Steam Methane Reforming
    Yan, Linbo
    Jia, Ziyue
    Liu, Yang
    Wang, Liang
    Shi, Jianye
    Qian, Mingyuan
    He, Boshu
    CATALYSTS, 2025, 15 (03)
  • [7] Exergy analysis and CO2 emission evaluation for steam methane reforming
    Chen, Bo
    Liao, Zuwei
    Wang, Jingdai
    Yu, Huanjun
    Yang, Yongrong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (04) : 3191 - 3200
  • [8] Characteristics of Reaction and Temperature in Catalytic Reactors for CO2 Methanation
    Yokoyama, Koichi
    Sasaki, Goki
    Kiyosawa, Masashi
    Sato, Kazunori
    Hirano, Tomoyuki
    Ogi, Takashi
    KAGAKU KOGAKU RONBUNSHU, 2023, 49 (02) : 28 - 37
  • [9] Thermodynamic analysis of autothermal steam and CO2 reforming of methane
    Li, Yunhua
    Wang, Yaquan
    Zhang, Xiangwen
    Mi, Zhentao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (10) : 2507 - 2514
  • [10] Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst
    Jakobsen, Jon Geest
    Jorgensen, Tommy L.
    Chorkendorff, Ib
    Sehested, Jens
    APPLIED CATALYSIS A-GENERAL, 2010, 377 (1-2) : 158 - 166