Neuromechanical Principles Underlying Movement Modularity and Their Implications for Rehabilitation

被引:312
作者
Ting, Lena H. [1 ,2 ,3 ]
Chiel, Hillel J. [4 ,5 ,6 ]
Trumbower, Randy D. [1 ,2 ,3 ]
Allen, Jessica L. [1 ,2 ]
Mckay, J. Lucas [1 ,2 ]
Hackney, Madeleine E. [7 ,8 ]
Kesar, Trisha M. [1 ,2 ,3 ]
机构
[1] Emory Univ, WH Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
[3] Emory Univ, Dept Rehabil Med, Div Phys Therapy, Atlanta, GA 30322 USA
[4] Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA
[5] Case Western Reserve Univ, Dept Neurosci, Cleveland, OH 44106 USA
[6] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[7] Atlanta VA Ctr Visual & Neurocognit Rehabil, Atlanta, GA 30033 USA
[8] Emory Univ, Dept Med, Div Gen Med & Geriatr, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
SPINAL-CORD-INJURY; UNDERSTANDING MUSCLE COORDINATION; RANDOMIZED CONTROLLED-TRIAL; OPTIMAL FEEDBACK-CONTROL; GROUND REACTION FORCES; PRIMARY MOTOR CORTEX; QUALITY-OF-LIFE; PARKINSONS-DISEASE; BASAL GANGLIA; PEDUNCULOPONTINE NUCLEUS;
D O I
10.1016/j.neuron.2015.02.042
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuromechanical principles define the properties and problems that shape neural solutions for movement. Although the theoretical and experimental evidence is debated, we present arguments for consistent structures in motor patterns, i.e., motor modules, that are neuromechanical solutions for movement particular to an individual and shaped by evolutionary, developmental, and learning processes. As a consequence, motor modules may be useful in assessing sensorimotor deficits specific to an individual and define targets for the rational development of novel rehabilitation therapies that enhance neural plasticity and sculpt motor recovery. We propose that motor module organization is disrupted and may be improved by therapy in spinal cord injury, stroke, and Parkinson's disease. Recent studies provide insights into the yet-unknown underlying neural mechanisms of motor modules, motor impairment, and motor learning and may lead to better understanding of the causal nature of modularity and its underlying neural substrates.
引用
收藏
页码:38 / 54
页数:17
相关论文
共 235 条
[1]   Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord [J].
Adkins, DeAnna L. ;
Boychuk, Jeffery ;
Remple, Michael S. ;
Kleim, Jeffrey A. .
JOURNAL OF APPLIED PHYSIOLOGY, 2006, 101 (06) :1776-1782
[2]   It Is Not About the Bike, It Is About the Pedaling: Forced Exercise and Parkinson's Disease [J].
Alberts, Jay L. ;
Linder, Susan M. ;
Penko, Amanda L. ;
Lowe, Mark J. ;
Phillips, Micheal .
EXERCISE AND SPORT SCIENCES REVIEWS, 2011, 39 (04) :177-186
[3]   The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance [J].
Allen, Jessica L. ;
Kautz, Steven A. ;
Neptune, Richard R. .
CLINICAL BIOMECHANICS, 2013, 28 (06) :697-704
[4]   Three-dimensional modular control of human walking [J].
Allen, Jessica L. ;
Neptune, Richard R. .
JOURNAL OF BIOMECHANICS, 2012, 45 (12) :2157-2163
[5]   Cortical Activation Associated with Muscle Synergies of the Human Male Pelvic Floor [J].
Asavasopon, Skulpan ;
Rana, Manku ;
Kirages, Daniel J. ;
Yani, Moheb S. ;
Fisher, Beth E. ;
Hwang, Darryl H. ;
Lohman, Everett B. ;
Berk, Lee S. ;
Kutch, Jason J. .
JOURNAL OF NEUROSCIENCE, 2014, 34 (41) :13811-13818
[6]   Do Improvements in Balance Relate to Improvements in Long-Distance Walking Function after Stroke? [J].
Awad, Louis N. ;
Reisman, Darcy S. ;
Binder-Macleod, Stuart A. .
STROKE RESEARCH AND TREATMENT, 2014, 2014
[7]   Targeting Paretic Propulsion to Improve Poststroke Walking Function: A Preliminary Study [J].
Awad, Louis N. ;
Reisman, Darcy S. ;
Kesar, Trisha M. ;
Binder-Macleod, Stuart A. .
ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2014, 95 (05) :840-848
[8]   BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia [J].
Baker-Herman, TL ;
Fuller, DD ;
Bavis, RW ;
Zabka, AG ;
Golder, FJ ;
Doperalski, NJ ;
Johnson, RA ;
Watters, JJ ;
Mitchell, GS .
NATURE NEUROSCIENCE, 2004, 7 (01) :48-55
[9]   Evolution and analysis of model CPGs for walking: II. General principles and individual variability [J].
Beer, RD ;
Chiel, HJ ;
Gallagher, JC .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1999, 7 (02) :119-147
[10]   Spontaneous embryonic motility: an enduring legacy [J].
Bekoff, A .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2001, 19 (02) :155-160