A database of rigorous and high-precision periodic orbits of the Lorenz model

被引:17
作者
Barrio, Roberto [1 ,2 ,5 ]
Dena, Angeles [3 ,4 ,5 ]
Tucker, Warwick [6 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[3] Ctr Univ Def Zaragoza, E-50090 Zaragoza, Spain
[4] Acad Gen Mil, IUMA, E-50090 Zaragoza, Spain
[5] Univ Zaragoza, Computat Dynam Grp, E-50009 Zaragoza, Spain
[6] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Computer-assisted proof; Periodic orbits; Validated numerics; High-precision; Lorenz model; DYNAMICAL-SYSTEMS;
D O I
10.1016/j.cpc.2015.04.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A benchmark database of very high-precision numerical and validated initial conditions of periodic orbits for the Lorenz model is presented. This database is a "computational challenge" and it provides the initial conditions of all periodic orbits of the Lorenz model up to multiplicity 10 and guarantees their existence via computer-assisted proofs methods, The orbits are computed using high-precision arithmetic and mixing several techniques resulting in 1000 digits of precision on the initial conditions of the periodic orbits, and intervals of size 10100 that prove the existence of each orbit. Program summary Program title: Lorenz-Database Catalogue identifier: AEWM_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 8515 No. of bytes in distributed program, including test data, etc.: 6964501 Distribution format: tar.gz Programming language: Data. Computer: Any computer. Operating system: Any. RAM: Database, no requirements Classification: 4.3, 4.12. Nature of problem: Database of all periodic orbits of the Lorenz model up to multiplicity 10 with 1000 precision digits. Solution method: Advanced search methods for locating unstable periodic orbits combined with the Taylor series method for multiple precision integration of ODEs and interval methods for providing Computer-Assisted proofs of the periodic orbits. Unusual features: The database gives 100 digits rigorously proved using Computer-Assisted techniques and 1000 digits using an optimal adaptive Taylor series method. Running time: Not Applicable. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 42 条
  • [1] Algorithm 924: TIDES, a Taylor Series Integrator for Differential EquationS
    Abad, Alberto
    Barrio, Roberto
    Blesa, Fernando
    Rodriguez, Marcos
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 39 (01):
  • [2] Computing periodic orbits with arbitrary precision
    Abad, Alberto
    Barrio, Roberto
    Dena, Angeles
    [J]. PHYSICAL REVIEW E, 2011, 84 (01):
  • [3] Afraimovich V. S., 1982, Trudy Moskovskoe Matematicheskoe Obshchestvo, V44, P150
  • [4] [Anonymous], STUDIES COMPUTATIONA
  • [5] EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS
    AUERBACH, D
    CVITANOVIC, P
    ECKMANN, JP
    GUNARATNE, G
    PROCACCIA, I
    [J]. PHYSICAL REVIEW LETTERS, 1987, 58 (23) : 2387 - 2389
  • [6] A three-parametric study of the Lorenz model
    Barrio, R.
    Serrano, S.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 229 (01) : 43 - 51
  • [7] VSVO formulation of the Taylor method for the numerical solution of ODEs
    Barrio, R
    Blesa, F
    Lara, M
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (1-2) : 93 - 111
  • [8] Breaking the limits: The Taylor series method
    Barrio, R.
    Rodriguez, M.
    Abad, A.
    Blesa, F.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) : 7940 - 7954
  • [9] Systematic Computer Assisted Proofs of periodic orbits of Hamiltonian systems
    Barrio, Roberto
    Rodriguez, Marcos
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2660 - 2675
  • [10] Computer-assisted proof of skeletons of periodic orbits
    Barrio, Roberto
    Rodriguez, Marcos
    Blesa, Fernando
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (01) : 80 - 85