Efficient visual tracking via low-complexity sparse representation

被引:3
作者
Lu, Weizhi [1 ]
Zhang, Jinglin [2 ]
Kpalma, Kidiyo [1 ]
Ronsin, Joseph [1 ]
机构
[1] UEB, INSA, IETR, UMR 6164, F-35708 Rennes, France
[2] Nanjing Univ Informat Sci & Technol, Sch Atmospher Sci, Nanjing 210044, Jiangsu, Peoples R China
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2015年
关键词
Object tracking; Sparse representation; Low complexity;
D O I
10.1186/s13634-015-0200-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thanks to its good performance on object recognition, sparse representation has recently been widely studied in the area of visual object tracking. Up to now, little attention has been paid to the complexity of sparse representation, while most works are focused on the performance improvement. By reducing the computation load related to sparse representation hundreds of times, this paper proposes by far the most computationally efficient tracking approach based on sparse representation. The proposal simply consists of two stages of sparse representation, one is for object detection and the other for object validation. Experimentally, it achieves better performance than some state-of-the-art methods in both accuracy and speed.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Robust Visual Tracking Using Flexible Structured Sparse Representation
    Bai, Tianxiang
    Li, Youfu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (01) : 538 - 547
  • [32] A JOINT ILLUMINATION AND SPARSE REPRESENTATION FOR VISUAL TRACKING
    Zhu, Suguo
    Du, Junping
    Han, Pengcheng
    2013 5TH IEEE INTERNATIONAL CONFERENCE ON BROADBAND NETWORK & MULTIMEDIA TECHNOLOGY (IC-BNMT), 2013, : 20 - 24
  • [33] Visual tracking using IPCA and sparse representation
    Dongjing Shan
    Chao Zhang
    Signal, Image and Video Processing, 2015, 9 : 913 - 921
  • [34] Visual tracking using IPCA and sparse representation
    Shan, Dongjing
    Zhang, Chao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (04) : 913 - 921
  • [35] Temporal Restricted Visual Tracking Via Reverse-Low-Rank Sparse Learning
    Yang, Yehui
    Hu, Wenrui
    Xie, Yuan
    Zhang, Wensheng
    Zhang, Tianzhu
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (02) : 485 - 498
  • [36] Incremental visual tracking via sparse discriminative classifier
    Devi, Rajkumari Bidyalakshmi
    Chanu, Yambem Jina
    Singh, Khumanthem Manglem
    MULTIMEDIA SYSTEMS, 2021, 27 (02) : 287 - 299
  • [37] Visual Tracking via Discriminative Sparse Similarity Map
    Zhuang, Bohan
    Lu, Huchuan
    Xiao, Ziyang
    Wang, Dong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1872 - 1881
  • [38] Low-Complexity Lossless Coding for Memory-Efficient Representation of Event Camera Frames
    Schiopu, Ionut
    Bilcu, Radu Ciprian
    IEEE SENSORS LETTERS, 2022, 6 (11)
  • [39] Object tracking via low-rank and structural sparse representation with fused penalty constraint
    Tian D.
    Zhang G.-S.
    Xie Y.-H.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (11): : 2479 - 2484
  • [40] Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR)
    Han, Zhenjun
    Jiao, Jianbin
    Zhang, Baochang
    Ye, Qixiang
    Liu, Jianzhuang
    PATTERN RECOGNITION, 2011, 44 (09) : 2170 - 2183