Processing strategies and software solutions for data-independent acquisition in mass spectrometry

被引:134
作者
Bilbao, Aivett [1 ,2 ]
Varesio, Emmanuel [2 ]
Luban, Jeremy [3 ]
Strambio-De-Castillia, Caterina [3 ]
Hopfgartner, Gerard [2 ]
Mueller, Markus [1 ,4 ]
Lisacek, Frederique [1 ,4 ]
机构
[1] SIB Swiss Inst Bioinformat, Proteome Informat Grp, CH-1211 Geneva, Switzerland
[2] Univ Lausanne, Univ Geneva, Sch Pharmaceut Sci, Life Sci Mass Spectrometry, Geneva, Switzerland
[3] Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA USA
[4] Univ Geneva, Fac Sci, Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
Bottom-up proteomics; Data-independent acquisition; Data processing and analysis; Label-free quantification; Mass spectrometry-LC-MS/MS; COLLISION-INDUCED DISSOCIATION; PEPTIDE IDENTIFICATION; QUANTITATIVE-ANALYSIS; INCREASED THROUGHPUT; RETENTION TIME; PROTEOMICS; SPECTRA; PROTEIN; MS/MS; PRECURSOR;
D O I
10.1002/pmic.201400323
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Data-independent acquisition (DIA) offers several advantages over data-dependent acquisition (DDA) schemes for characterizing complex protein digests analyzed by LC-MS/MS. In contrast to the sequential detection, selection, and analysis of individual ions during DDA, DIA systematically parallelizes the fragmentation of all detectable ions within a wide m/z range regardless of intensity, thereby providing broader dynamic range of detected signals, improved reproducibility for identification, better sensitivity, and accuracy for quantification, and, potentially, enhanced proteome coverage. To fully exploit these advantages, composite or multiplexed fragment ion spectra generated by DIA require more elaborate processing algorithms compared to DDA. This review examines different DIA schemes and, in particular, discusses the concepts applied to and related to data processing. Available software implementations for identification and quantification are presented as comprehensively as possible and examples of software usage are cited. Processing workflows, including complete proprietary frameworks or combinations of modules from different open source data processing packages are described and compared in terms of software availability and usability, programming language, operating system support, input/output data formats, as well as the main principles employed in the algorithms used for identification and quantification. This comparative study concludes with further discussion of current limitations and expectable improvements in the short-and midterm future.
引用
收藏
页码:964 / 980
页数:17
相关论文
共 55 条
[1]  
Aebersold R, 2009, NAT METHODS, V6, P411, DOI [10.1038/nmeth.f.255, 10.1038/NMETH.F.255]
[2]   Detection of co-eluted peptides using database search methods [J].
Alves, Gelio ;
Ogurtsov, Aleksey Y. ;
Kwok, Siwei ;
Wu, Wells W. ;
Wang, Guanghui ;
Shen, Rong-Fong ;
Yu, Yi-Kuo .
BIOLOGY DIRECT, 2008, 3 (1) :1-16
[3]   Deconvolution of Mixture Spectra from Ion-Trap Data-Independent-Acquisition Tandem Mass Spectrometry [J].
Bern, Marshall ;
Finney, Gregory ;
Hoopmann, Michael R. ;
Merrihew, Gennifer ;
Toth, Michael J. ;
MacCoss, Michael J. .
ANALYTICAL CHEMISTRY, 2010, 82 (03) :833-841
[4]  
Bernhardt O. M., 2012, P 60 ASMS C MASS SPE, P20
[5]   Improving Protein and Proteome Coverage through Data-Independent Multiplexed Peptide Fragmentation [J].
Blackburn, Kevin ;
Mbeunkui, Flaubert ;
Mitra, Srijeet K. ;
Mentzel, Tobias ;
Goshe, Michael B. .
JOURNAL OF PROTEOME RESEARCH, 2010, 9 (07) :3621-3637
[6]   Improving Qualitative and Quantitative Performance for MSE-based Label-free Proteomics [J].
Bond, Nicholas J. ;
Shliaha, Pavel V. ;
Lilley, Kathryn S. ;
Gatto, Laurent .
JOURNAL OF PROTEOME RESEARCH, 2013, 12 (06) :2340-2353
[7]   Current challenges in software solutions for mass spectrometry-based quantitative proteomics [J].
Cappadona, Salvatore ;
Baker, Peter R. ;
Cutillas, Pedro R. ;
Heck, Albert J. R. ;
van Breukelen, Bas .
AMINO ACIDS, 2012, 43 (03) :1087-1108
[8]   XDIA: improving on the label-free data-independent analysis [J].
Carvalho, Paulo C. ;
Han, Xuemei ;
Xu, Tao ;
Cociorva, Daniel ;
Carvalho, Maria da Gloria ;
Barbosa, Valmir C. ;
Yates, John R., III .
BIOINFORMATICS, 2010, 26 (06) :847-848
[9]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920
[10]   MULTIPLEXED AND DATA-INDEPENDENT TANDEM MASS SPECTROMETRY FOR GLOBAL PROTEOME PROFILING [J].
Chapman, John D. ;
Goodlett, David R. ;
Masselon, Christophe D. .
MASS SPECTROMETRY REVIEWS, 2014, 33 (06) :452-470