In vitro analysis of immersed human tissues by Raman microspectroscopy

被引:60
作者
Bonnier, F. [1 ]
Mehmood, A. [1 ]
Knief, P. [1 ]
Meade, A. D. [2 ]
Hornebeck, W. [3 ]
Lambkin, H. [4 ]
Flynn, K. [4 ]
McDonagh, V. [5 ]
Healy, C. [5 ]
Lee, T. C. [5 ]
Lyng, F. M. [1 ]
Byrne, Hugh J. [1 ]
机构
[1] Dublin Inst Technol, Focas Res Inst, Dublin 8, Ireland
[2] Dublin Inst Technol, Sch Phys, Dublin 8, Ireland
[3] Univ Reims, UMR 6237, CNRS,MeDYC, URCA,Fac Med, F-51096 Reims, France
[4] Dublin Inst Technol, Sch Biol Sci, Dublin 8, Ireland
[5] Royal Coll Surgeons Ireland, Dept Anat, Dublin 2, Ireland
关键词
Raman spectroscopy; scattering; tissue analysis; dewaxing; refractive index; OPTICAL COHERENCE TOMOGRAPHY; SINGLE LIVING CELLS; HUMAN SKIN; SECONDARY STRUCTURE; REFRACTIVE-INDEX; SPECTROSCOPY; VIVO; MICROSCOPY; SCATTERING; DIAGNOSIS;
D O I
10.1002/jrs.2825
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Raman microspectroscopy is a powerful tool for the analysis of tissue sections, providing a molecular map of the investigated samples. Nevertheless, data pre-processing and, particularly, the removal of the broad background to the spectra remain problematic. Indeed, the physical origin of the background has not been satisfactorily determined. Using 785 nm as source in a confocal geometry, it is demonstrated for the example of the protein kappa-elastin that the background and resulting quality of the recorded spectrum are dependent on the morphology of the sample. Whereas a fine powder yields a dominant broad background, compressed pellets and solution-cast thin films produce, respectively, improved quality spectra and significantly reduced spectral background. As the chemical composition of the samples is identical, the background is ascribed to stray light due to diffuse scattering rather than an intrinsic photoluminescence. The recorded spectra from a tissue sample exhibit a large and spatially variable background, resulting in poorly defined spectral features. A significant reduction of the background signal as well as improvement of the spectral quality is achieved by immersion of the sample in water and measurement with an immersion objective. The significant improvement in signal to background is attributed to a reduction of the diffuse scattering due to a change in the effective morphology as a result of an improved index matching at the water/tissue interface compared to the air/tissue interface. Compared to sections measured in air, the background is reduced to that of the water, and pre-processing is reduced to the subtraction of the substrate and water signal and correction for the instrument response, both of which are highly reproducible. Data pre-processing is thus greatly simplified and the results significantly more reliable. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:888 / 896
页数:9
相关论文
共 48 条
[41]  
Redmond RW., 2003, Handbook of Biomedical Fluorescence
[42]   Infrared spectral imaging of lymph nodes: Strategies for analysis and artifact reduction [J].
Romeo, MJ ;
Diem, M .
VIBRATIONAL SPECTROSCOPY, 2005, 38 (1-2) :115-119
[43]   DETERMINATION OF THE REFRACTIVE-INDEX OF HIGHLY SCATTERING HUMAN TISSUE BY OPTICAL COHERENCE TOMOGRAPHY [J].
TEARNEY, GJ ;
BREZINSKI, ME ;
SOUTHERN, JF ;
BOUMA, BE ;
HEE, MR ;
FUJIMOTO, JG .
OPTICS LETTERS, 1995, 20 (21) :2258-2260
[44]   Digital Dewaxing of Raman Signals: Discrimination Between Nevi and Melanoma Spectra Obtained from Paraffin-Embedded Skin Biopsies [J].
Tfayli, Ali ;
Gobinet, Cyril ;
Vrabie, Valeriu ;
Huez, Regis ;
Manfait, Michel ;
Piot, Olivier .
APPLIED SPECTROSCOPY, 2009, 63 (05) :564-570
[45]   Physics-based multiplicative scatter correction approaches for improving the performance of calibration models [J].
Thennadil, SN ;
Martens, H ;
Kohler, A .
APPLIED SPECTROSCOPY, 2006, 60 (03) :315-321
[46]   Water (H2O and D2O) molar absorptivity in the 1000-4000 cm(-1) range and quantitative infrared spectroscopy of aqueous solutions [J].
Venyaminov, SY ;
Prendergast, FG .
ANALYTICAL BIOCHEMISTRY, 1997, 248 (02) :234-245
[47]   IR Spectral Imaging for Histopathological Characterization of Xenografted Human Colon Carcinomas [J].
Wolthuis, Rolf ;
Travo, Adrian ;
Nicolet, Celine ;
Neuville, Agnes ;
Gaub, Marie-Pierre ;
Guenot, Dominique ;
Ly, Elodie ;
Manfait, Michel ;
Jeannesson, Pierre ;
Piott, Olivier .
ANALYTICAL CHEMISTRY, 2008, 80 (22) :8461-8469
[48]   Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy [J].
Zhao, Jianhua ;
Lui, Harvey ;
McLean, David I. ;
Zeng, Haishan .
APPLIED SPECTROSCOPY, 2007, 61 (11) :1225-1232