Diffusion as a singular homogenization of the Frenkel-Kontorova model

被引:1
作者
Alibaud, N. [2 ,3 ]
Briani, A. [1 ,4 ]
Monneaue, R. [5 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] CNRS, Lab Math Besancon, UMR 6623, F-25030 Besancon, France
[3] Prince Songkla Univ, Fac Sci, Dept Math, Hat Yai 90112, Songkhla, Thailand
[4] ENSTA, UMA, F-75739 Paris 15, France
[5] Univ Paris Est, CERMICS, Ecole Ponts ParisTech, F-77455 Marne La Vallee 2, France
关键词
Particle systems; Periodic homogenization; Frenkel-Kontorova models; Hamilton-Jacobi equations; Nonlinear diffusion; VISCOSITY SOLUTIONS; EQUATIONS; DYNAMICS;
D O I
10.1016/j.jde.2011.05.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider a general fully overdamped Frenkel-Kontorova model. This model describes the dynamics of an infinite chain of particles, moving in a periodic landscape. Our aim is to describe the macroscopic behavior of this system. We study a singular limit corresponding to a high density of particles moving in a vanishing periodic landscape. We identify the limit equation which is a nonlinear diffusion equation. Our homogenization approach is done in the framework of viscosity solutions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:785 / 815
页数:31
相关论文
共 13 条