Galois theory over rings of arithmetic power series

被引:4
作者
Fehm, Arno [1 ]
Paran, Elad [2 ]
机构
[1] Tel Aviv Univ, Tel Aviv, Israel
[2] Hebrew Univ Jerusalem, IL-91905 Jerusalem, Israel
关键词
Galois theory; Power series; Ample fields; Large fields; Split embedding problems; Semi-free profinite groups; SPLIT EMBEDDING PROBLEMS; FIELDS; VARIETIES; COVERS;
D O I
10.1016/j.aim.2010.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a domain, complete with respect to a norm which defines a non-discrete topology on R. We prove that the quotient field of R is ample, generalizing a theorem of Pop. We then consider the case where R is a ring of arithmetic power series which are holomorphic on the closed disc of radius 0 < r < 1 around the origin, and apply the above result to prove that the absolute Galois group of the quotient field of R is semi-free. This strengthens a theorem of Harbater, who solved the inverse Galois problem over these fields. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4183 / 4197
页数:15
相关论文
共 26 条
[1]  
[Anonymous], MODEL THEORY APPL AL
[2]  
[Anonymous], 2002, ALGEBRA
[3]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[4]  
AZGIN S, 2010, GLOBAL EXTREMA UNPUB
[5]   Permanence criteria for semi-free profinite groups [J].
Bary-Soroker, Lior ;
Haran, Dan ;
Harbater, David .
MATHEMATISCHE ANNALEN, 2010, 348 (03) :539-563
[6]  
BARYSOROKER L, 2010, FULLY HILBERTI UNPUB
[7]  
Debes P., 1997, LONDON MATH SOC LECT, V243, P119, DOI DOI 10.1017/CB09780511666124.007
[8]   GLOBAL APPROXIMATION IN DIMENSION-2 [J].
DENEF, J ;
HARBATER, D .
JOURNAL OF ALGEBRA, 1990, 129 (01) :159-193
[9]   ON THE RANK OF ABELIAN VARIETIES OVER AMPLE FIELDS [J].
Fehm, Arno ;
Petersen, Sebastian .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (03) :579-586
[10]  
Fried MD, 2008, ERGEB MATH GRENZGEB, V11, P1