AI-Based Video Clipping of Soccer Events

被引:3
|
作者
Valand, Joakim Olav [1 ,2 ]
Kadragic, Haris [1 ,2 ]
Hicks, Steven Alexander [1 ,3 ]
Thambawita, Vajira Lasantha [1 ,3 ]
Midoglu, Cise [1 ]
Kupka, Tomas [4 ]
Johansen, Dag [5 ]
Riegler, Michael Alexander [1 ,5 ]
Halvorsen, Pal [1 ,3 ,4 ]
机构
[1] SimulaMet, N-0167 Oslo, Norway
[2] Univ Oslo, Dept Informat, N-0373 Oslo, Norway
[3] Oslo Metropolitan Univ, Dept Comp Sci, N-0167 Oslo, Norway
[4] Forzasys, N-0167 Oslo, Norway
[5] UIT Arctic Univ Norway, Dept Comp Sci, N-9037 Tromso, Norway
来源
关键词
event clipping; deep learning; logo transition; scene boundary detection; soccer; sports analysis; video;
D O I
10.3390/make3040049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The current gold standard for extracting highlight clips from soccer games is the use of manual annotations and clippings, where human operators define the start and end of an event and trim away the unwanted scenes. This is a tedious, time-consuming, and expensive task, to the extent of being rendered infeasible for use in lower league games. In this paper, we aim to automate the process of highlight generation using logo transition detection, scene boundary detection, and optional scene removal. We experiment with various approaches, using different neural network architectures on different datasets, and present two models that automatically find the appropriate time interval for extracting goal events. These models are evaluated both quantitatively and qualitatively, and the results show that we can detect logo and scene transitions with high accuracy and generate highlight clips that are highly acceptable for viewers. We conclude that there is considerable potential in automating the overall soccer video clipping process.
引用
收藏
页码:990 / 1008
页数:19
相关论文
共 50 条
  • [41] Automated ai-based leak detection
    Dierolf C.
    Sauer A.
    WT Werkstattstechnik, 2021, 111 (03): : 152 - 158
  • [42] AI-Based Resume Matching and Prediction
    Waghmare, Pradnya
    Bhosale, Ankita
    Gawande, Akshay
    Varade, Pradip
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 2, SMARTCOM 2024, 2024, 946 : 371 - 383
  • [43] Towards AI-based motion modelling
    Paganelli, C.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S426 - S590
  • [44] AI-based telepresence for broadcast applications
    Monteagudo, Henrique Pineiro
    Nathoo, Rayan Daod
    Deillon, Laurent
    Gao, Changsheng
    Ebrahimi, Touradj
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLV, 2022, 12226
  • [45] Workshop: Designing with AI-based tools
    Okopnyi, Pavel
    Guribye, Frode
    Bachinski, Miroslav
    Fjeld, Morten
    Buschek, Daniel
    Zindulka, Tim
    Lehmann, Florian
    Palma, Paulina Becerril
    ADJUNCT PROCEEDINGS OF THE 13TH NORDIC CONFERENCE ON HUMAN-COMPUTER INTERACTION, NORDICHI 2024, 2024,
  • [46] AI-Based Media Coding Standards
    Basso A.
    Ribeca P.
    Bosi M.
    Pretto N.
    Chollet G.
    Guarise M.
    Choi M.
    Chiariglione L.
    Iacoviello R.
    Banterle F.
    Artusi A.
    Gissi F.
    Fiandrotti A.
    Ballocca G.
    Mazzaglia M.
    Moskowitz S.
    SMPTE Motion Imaging Journal, 2022, 131 (04): : 10 - 20
  • [47] AI-Based Assistance System for Manufacturing
    Deppe, Sahar
    Brandt, Lukas
    Bruenninghaus, Marc
    Papenkordt, Jorg
    Heindorf, Stefan
    Tschirner-Vinke, Gudrun
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [48] Evaluating Quality of AI-Based Systems
    Toor, Satvir Kaur
    Sandhu, Parvinder Singh
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (08): : 139 - 148
  • [49] Hybrid AI-based channelling prediction
    Goel, Vikas
    Galrani, Kamal
    Marje, Vishal
    Steel Times International, 2024, 2024 (31): : 30 - 33
  • [50] AI-Based Health Management System
    Nagulpelli, Swadhin
    Chavan, Akash
    Kandalkar, Aniket
    Kulkarni, Smita
    INTELLIGENT SYSTEMS AND APPLICATIONS, ICISA 2022, 2023, 959 : 379 - 389