Saliency Detection for Compressive Sensing Measurements

被引:1
作者
Li, Hongliang [1 ]
Lu, Ke [1 ]
Xue, Jian [1 ]
Dai, Feng [2 ]
Zhang, Yongdong [3 ]
机构
[1] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[3] Univ Sci & Technol China, Hefei 230027, Peoples R China
来源
SENSING AND IMAGING | 2021年 / 22卷 / 01期
基金
中国国家自然科学基金;
关键词
Compressive sensing; Saliency detection; Low-resolution; IMAGE; NETWORK;
D O I
10.1007/s11220-021-00365-z
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Compressive sensing can obtain high-quality image reconstruction at a lower sampling rate. Using image saliency for compressive sensing measurement and reconstruction can effectively improve the image quality of reconstruction. For this reason, we propose a method of saliency detection using compressive sensing global measurement values. This method uses the characteristics of the Hadamard matrix to reconstruct the original image with low resolution, and then uses the low resolution image for saliency detection. This method takes advantage of the feature that saliency detection does not require high-resolution images. At the same time, low-resolution images are also conducive to neural network reconstruction. Experimental results prove that low-resolution images can indeed obtain better saliency detection results. In order to further improve the saliency detection results, we also propose a saliency detection method with an adaptive measurement matrix. Experiments show that our method can obtain better reconstruction quality and saliency maps with a set of trained compressive sensing measurement matrices.
引用
收藏
页数:14
相关论文
共 27 条
[1]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[2]   Global Contrast Based Salient Region Detection [J].
Cheng, Ming-Ming ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Torr, Philip H. S. ;
Hu, Shi-Min .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :569-582
[3]   SalientShape: group saliency in image collections [J].
Cheng, Ming-Ming ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
VISUAL COMPUTER, 2014, 30 (04) :443-453
[4]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[5]  
Ghosh S., 2017, FAR END SALIENCY DET, V322
[6]   Video Saliency Detection Using Object Proposals [J].
Guo, Fang ;
Wang, Wenguan ;
Shen, Jianbing ;
Shao, Ling ;
Yang, Jian ;
Tao, Dacheng ;
Tang, Yuan Yan .
IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (11) :3159-3170
[7]  
Li GB, 2015, PROC CVPR IEEE, P5455, DOI 10.1109/CVPR.2015.7299184
[8]   Adaptive Compressive Sensing of Images Using Spatial Entropy [J].
Li, Ran ;
Duan, Xiaomeng ;
Guo, Xiaoli ;
He, Wei ;
Lv, Yongfeng .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
[9]   The Secrets of Salient Object Segmentation [J].
Li, Yin ;
Hou, Xiaodi ;
Koch, Christof ;
Rehg, James M. ;
Yuille, Alan L. .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :280-287
[10]   Convolutional Neural Networks for Noniterative Reconstruction of Compressively Sensed Images [J].
Lohit, Suhas ;
Kulkarni, Kuldeep ;
Kerviche, Ronan ;
Turaga, Pavan ;
Ashok, Amit .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (03) :326-340