Sub-Hilbert relation for Fock-Sobolev type spaces

被引:0
作者
Eskandari, Setareh [1 ,2 ]
Abkar, Ali [2 ]
Ahag, Per [1 ]
Perala, Antti [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
[2] Imam Khomeini Int Univ, Dept Pure Math, Fac Sci, Qazvin 34149, Iran
来源
NEW YORK JOURNAL OF MATHEMATICS | 2022年 / 28卷
关键词
Sub-Fock Hilbert space; Fock-Sobolev spaces; Toeplitz operator; reproducing kernel; UNIT BALL; BERGMAN; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, two specific sub-Hilbert spaces are studied. They arise from the action of a Toeplitz operator on Fock-Sobolev type spaces, induced by a general Gaussian type weight. The argument is based on analysing the reproducing kernel of the corresponding sub-Hilbert space.
引用
收藏
页码:958 / 969
页数:12
相关论文
共 18 条
  • [1] Weighted sub-Bergman Hilbert spaces in the unit disk
    Abkar, A.
    Jafarzadeh, B.
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (02) : 435 - 443
  • [2] THEORY OF REPRODUCING KERNELS
    ARONSZAJN, N
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) : 337 - 404
  • [3] Ball J.A., 2015, OPERATOR THEORY, V1, P631, DOI DOI 10.1007/978-3-0348-0667-1_6.959
  • [4] Bergman-type projections in generalized Fock spaces
    Bommier-Hato, Helene
    Englis, Miroslav
    Youssfi, El-Hassan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1086 - 1104
  • [5] Fock-Sobolev Spaces of Fractional Order
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    [J]. POTENTIAL ANALYSIS, 2015, 43 (02) : 199 - 240
  • [6] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [7] Fock-Sobolev spaces and their Carleson measures
    Cho, Hong Rae
    Zhu, Kehe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2483 - 2506
  • [8] de Branges L., 1966, PERTURBATION THEORY, P347
  • [9] de Branges L., 1966, Perturbation Theory and its Applications in Quantum Mechanics, P295
  • [10] de Branges L., 1966, SQUARE SUMMABLE POWE