Quantum corrections to newtonian potential and generalized uncertainty principle

被引:3
作者
Scardigli, Fabio [1 ,2 ]
Lambiase, Gaetano [3 ,4 ]
Vagenas, Elias [5 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[3] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, Salerno, Italy
[4] INFN, Grp Collegato Salerno, Salerno, Italy
[5] Kuwait Univ, Theoret Phys Grp, Dept Phys, POB 5969, Safat 13060, Kuwait
来源
8TH INTERNATIONAL WORKSHOP DICE2016: SPACETIME - MATTER - QUANTUM MECHANICS | 2017年 / 880卷
关键词
MINIMAL LENGTH UNCERTAINTY; PLANCK LENGTH; GRAVITY; GUP;
D O I
10.1088/1742-6596/880/1/012044
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We use the leading quantum corrections to the newtonian potential to compute the deformation parameter of the generalized uncertainty principle. By assuming just only General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum, our calculation gives, to first order, a specific numerical result. We briefly discuss the physical meaning of this value, and compare it with the previously obtained bounds on the generalized uncertainty principle deformation parameter.
引用
收藏
页数:7
相关论文
共 49 条
[11]   Quantum corrections to the Schwarzschild and Kerr metrics (vol D 68, art no 084005, 2003) [J].
Bjerrum-Bohr, NEJ ;
Donoghue, JF ;
Holstein, BR .
PHYSICAL REVIEW D, 2005, 71 (06)
[12]   Quantum corrections to the Schwarzschild and Kerr metrics [J].
Bjerrum-Bohr, NEJ ;
Donoghue, JF ;
Holstein, BR .
PHYSICAL REVIEW D, 2003, 68 (08)
[13]   Quantum gravitational corrections to the nonrelativistic scattering potential of two masses [J].
Bjerrum-Bohr, NEJ ;
Donoghue, JF ;
Holstein, BR .
PHYSICAL REVIEW D, 2003, 67 (08)
[14]   Generalized uncertainty principles and localization of a particle in discrete space [J].
Bojowald, Martin ;
Kempf, Achim .
PHYSICAL REVIEW D, 2012, 86 (08)
[15]   Minimal length uncertainty relation and the hydrogen atom [J].
Brau, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44) :7691-7696
[16]  
Brukner C., 2012, NATURE PHYS, V8, P393
[17]   Generalized uncertainty principle from quantum geometry [J].
Capozziello, S ;
Lambiase, G ;
Scarpetta, G .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (01) :15-22
[18]   How classical are TeV-scale black holes? [J].
Cavaglià, M ;
Das, S .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (19) :4511-4522
[19]   Will we observe black holes at the LHC? [J].
Cavaglià, M ;
Das, S ;
Maartens, R .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (15) :L205-L212
[20]   Universality of Quantum Gravity Corrections [J].
Das, Saurya ;
Vagenas, Elias C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (22)