Multicopy and stochastic transformation of multipartite pure states

被引:32
作者
Chen, Lin [1 ]
Hayashi, Masahito [1 ,2 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117542, Singapore
[2] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 02期
基金
新加坡国家研究基金会;
关键词
ENTANGLEMENT; ARRAYS;
D O I
10.1103/PhysRevA.83.022331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Characterizing the transformation and classification of multipartite entangled states is a basic problem in quantum information. We study the problem under the two most common environments, local operations and classical communications (LOCC), stochastic LOCC and two more general environments, multicopy LOCC (MCLOCC), and multicopy SLOCC (MCSLOCC). We show that two transformable multipartite states under LOCC or SLOCC are also transformable under MCLOCC and MCSLOCC. What is more, these two environments are equivalent in the sense that two transformable states under MCLOCC are also transformable under MCSLOCC, and vice versa. Based on these environments we classify the multipartite pure states into a few inequivalent sets and orbits, between which we build the partial order to decide their transformation. In particular, we investigate the structure of SLOCC-equivalent states in terms of tensor rank, which is known as the generalized Schmidt rank. Given the tensor rank, we show that Greenberger-Horne-Zeilinger states can be used to generate all states with a smaller or equivalent tensor rank under SLOCC, and all reduced separable states with a cardinality smaller than or equivalent to the tensor rank under LOCC. Using these concepts, we extended the concept of the "maximally entangled state" in the multipartite system.
引用
收藏
页数:7
相关论文
共 24 条
[1]   Unique decompositions, faces, and automorphisms of separable states [J].
Alfsen, Erik ;
Shultz, Fred .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
[2]   Classification of nonasymptotic bipartite pure-state entanglement transformations [J].
Bandyopadhyay, S ;
Roychowdhury, V ;
Sen, U .
PHYSICAL REVIEW A, 2002, 65 (05) :523151-523154
[3]  
B├a┬╝rgisser P., 1997, ALGEBRAIC COMPLEXITY
[4]   Operational Families of Entanglement Classes for Symmetric N-Qubit States [J].
Bastin, T. ;
Krins, S. ;
Mathonet, P. ;
Godefroid, M. ;
Lamata, L. ;
Solano, E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (07)
[5]   Exact and asymptotic measures of multipartite pure-state entanglement [J].
Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63)
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[8]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[9]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[10]   Tensor Rank and Stochastic Entanglement Catalysis for Multipartite Pure States [J].
Chen, Lin ;
Chitambar, Eric ;
Duan, Runyao ;
Ji, Zhengfeng ;
Winter, Andreas .
PHYSICAL REVIEW LETTERS, 2010, 105 (20)