Comparison of Conventional Gadoxetate Disodium-Enhanced MRI Features and Radiomics Signatures With Machine Learning for Diagnosing Microvascular Invasion

被引:37
作者
Chen, Yidi [1 ]
Xia, Yuwei [2 ]
Tolat, Parag P. [3 ]
Long, Liling [1 ]
Jiang, Zijian [1 ]
Huang, Zhongkui [1 ]
Tang, Qin [1 ]
机构
[1] Guangxi Med Univ, Dept Radiol, Affiliated Hosp 1, 6 Shuangyong Rd, Nanning 530021, Guangxi, Peoples R China
[2] Huiying Med Technol Co Ltd, Beijing, Peoples R China
[3] Med Coll Wisconsin, Dept Radiol, Milwaukee, WI 53226 USA
基金
中国国家自然科学基金;
关键词
hepatocellular carcinoma; MRI; radiomics; GD-EOB-DTPA; HEPATOCELLULAR-CARCINOMA; PREOPERATIVE PREDICTION; HEPATOBILIARY PHASE; TEXTURE ANALYSIS; RISK; PROGNOSIS; NOMOGRAM; IMAGES; CT;
D O I
10.2214/AJR.20.23255
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OBJECTIVE. This study aimed to determine the best model for predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using conventional gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (gadoxetate disodium)- enhanced MRI features and radiomics signatures with machine learning. MATERIALS AND METHODS. This retrospective study included 269 patients with a postoperative pathologic diagnosis of HCC. Gadoxetate disodium-enhanced MRI features were assessed, including T1 relaxation time, tumor margin, tumor size, peritumoral enhancement, peritumoral hypointensity, and ADC. Radiomics models were constructed and validated by machine learning. The least absolute shrinkage and selection operator (LASSO) was used for feature selection, and radiomics-based LASSO models were constructed with six classifiers. Predictive capability was assessed using the ROC AUC. RESULTS. Histologic examination confirmed MVI in 111 (41.3%) of the 269 patients. ADC value, nonsmooth tumor margin, and 20-minute T1 relaxation time showed diagnostic accuracy with AUC values of 0.850, 0.847, and 0.846, respectively (p <.05 for all). A total of 1395 quantitative imaging features were extracted. In the hepatobiliary phase (HBP) model, the support vector machine (SVM), extreme gradient boosting (XGBoost), and logistic regression (LR) classifiers showed greater diagnostic efficiency for predicting MVI, with AUCs of 0.942, 0.938, and 0.936, respectively (p <.05 for all). CONCLUSION. ADC value, nonsmooth tumor margin, and 20-minute T1 relaxation time show high diagnostic accuracy for predicting MVI. Radiomics signatures with machine learning can further improve the ability to predict MVI and are best modeled during HBP. The SVM, XGBoost, and LR classifiers may serve as potential biomarkers to evaluate MVI.
引用
收藏
页码:1510 / 1520
页数:11
相关论文
共 39 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Added value of smooth hypointense rim in the hepatobiliary phase of gadoxetic acid-enhanced MRI in identifying tumour capsule and diagnosing hepatocellular carcinoma [J].
An, Chansik ;
Rhee, Hyungjin ;
Han, Kyunghwa ;
Choi, Jin-Young ;
Park, Young-Nyun ;
Park, Mi-Suk ;
Kim, Myeong-Jin ;
Park, Sumi .
EUROPEAN RADIOLOGY, 2017, 27 (06) :2610-2618
[3]  
Bakr S, 2017, J MED IMAGING, V4, DOI 10.1117/1.JMI.4.4.041303
[4]   Diagnostic Value of Gd-EOB-DTPA-Enhanced MRI for the Expression of Ki67 and Microvascular Density in Hepatocellular Carcinoma [J].
Chen, Yidi ;
Qin, Xiali ;
Long, Liling ;
Zhang, Ling ;
Huang, Zhongkui ;
Jiang, Zijian ;
Li, Chenhui .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (06) :1755-1763
[5]   Effect of microvascular invasion on the postoperative long-term prognosis of solitary small HCC: a systematic review and meta-analysis [J].
Chen, Zhen-Hua ;
Zhang, Xiu-Ping ;
Wang, Hang ;
Chai, Zong-Tao ;
Sun, Ju-Xian ;
Guo, Wei-Xing ;
Shi, Jie ;
Cheng, Shu-Qun .
HPB, 2019, 21 (08) :935-944
[6]   Prediction of Microvascular Invasion of Hepatocellular Carcinoma: Preoperative CT and Histopathologic Correlation [J].
Chou, Chen-Te ;
Chen, Ran-Chou ;
Lin, Wei-Chan ;
Ko, Chih-Jan ;
Chen, Chia-Bang ;
Chen, Yao-Li .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2014, 203 (03) :W253-W259
[7]   Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? [J].
Davnall F. ;
Yip C.S.P. ;
Ljungqvist G. ;
Selmi M. ;
Ng F. ;
Sanghera B. ;
Ganeshan B. ;
Miles K.A. ;
Cook G.J. ;
Goh V. .
Insights into Imaging, 2012, 3 (6) :573-589
[8]   Machine Learning for Medical Imaging1 [J].
Erickson, Bradley J. ;
Korfiatis, Panagiotis ;
Akkus, Zeynettin ;
Kline, Timothy L. .
RADIOGRAPHICS, 2017, 37 (02) :505-515
[9]   Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI [J].
Feng, Shi-Ting ;
Jia, Yingmei ;
Liao, Bing ;
Huang, Bingsheng ;
Zhou, Qian ;
Li, Xin ;
Wei, Kaikai ;
Chen, Lili ;
Li, Bin ;
Wang, Wei ;
Chen, Shuling ;
He, Xiaofang ;
Wang, Haibo ;
Peng, Sui ;
Chen, Ze-Bin ;
Tang, Mimi ;
Chen, Zhihang ;
Hou, Yang ;
Peng, Zhenwei ;
Kuang, Ming .
EUROPEAN RADIOLOGY, 2019, 29 (09) :4648-4659
[10]  
Ghouri Yezaz Ahmed, 2017, J Carcinog, V16, P1, DOI 10.4103/jcar.JCar_9_16